Skip header and navigation

15 records – page 1 of 2.

Contact Joints in Engineered Wood Products

https://research.thinkwood.com/en/permalink/catalogue1558
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Schmidt, Tobias
Blaß, Hans Joachim
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Contact Joints
Joints
Stiffness
Load Carrying Capacity
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1321-1328
Summary
Cross laminated timber (CLT) members are especially suited for in-plane loads due to their high shear strength and stiffness. However, available connection techniques show limited load-carrying capacities and stiffness values in comparison to the shear capacity of CLT...
Online Access
Free
Resource Link
Less detail

Design of Timber-Concrete Composite Structures

https://research.thinkwood.com/en/permalink/catalogue1936
Year of Publication
2018
Topic
Mechanical Properties
Connections
Serviceability
Design and Systems
Material
Timber-Concrete Composite

Development of Novel Standardized Structural Timber Elements Using Wood-Wood Connections

https://research.thinkwood.com/en/permalink/catalogue2747
Year of Publication
2020
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
Author
Gamerro, Julien
Publisher
Lausanne, EPFL
Year of Publication
2020
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Connections
Keywords
Timber Construction
Connections
Digital Fabrication
Design for Manufacturing and Assembly
Structural Design
Structural Frameworks
Semi-Rigid Connection
Experimental
Shear Strength
Compression Strength
Wood-Wood Connections
Bending Test
Bending Stiffness
Numerical Model
Load Carrying Capacity
Slip Modulus
Language
English
Research Status
Complete
Summary
Traditional wood-wood connections, widely used in the past, have been progressively replaced by steel fasteners and bonding processes in modern timber constructions. However, the emergence of digital fabrication and innovative engineered timber products have offered new design possibilities for wood-wood connections. The design-to-production workflow has evolved considerably over the last few decades, such that a large number of connections with various geometries can now be easily produced. These connections have become a cost-competitive alternative for the edgewise connection of thin timber panels. Several challenges remain in order to broaden the use of this specific joining technique into common timber construction practice: (1) prove the applicability at the building scale, (2) propose a standardized construction system, (3) develop a convenient calculation model for practice, and (4) investigate the mechanical behavior of wood-wood connections. The first building implementation of digitally produced through-tenon connections for a folded-plate structure is presented in this work. Specific computational tools for the design and manufacture of more than 300 different plates were efficiently applied in a multi-stakeholder project environment. Cross-laminated timber panels were investigated for the first time, and the potential of such connections was demonstrated for different engineered timber products. Moreover, this work demonstrated the feasibility of this construction system at the building scale. For a more resilient and locally distributed construction process, a standardized system using through-tenon connections and commonly available small panels was developed to reconstitute basic housing components. Based on a case-study with industry partners, the fabrication and assembly processes were validated with prototypes made of oriented strand board. Their structural performance was investigated by means of a numerical model and a comparison with glued and nailed assemblies. The results showed that through-tenon connections are a viable alternative to commonly used mechanical fasteners. So far, the structural analysis of such construction systems has been mainly achieved with complex finite element models, not in line with the simplicity of basic housing elements. A convenient calculation model for practice, which can capture the semi-rigid behavior of the connections and predict the effective bending stiffness, was thus introduced and subjected to large-scale bending tests. The proposed model was in good agreement with the experimental results, highlighting the importance of the connection behavior. The in-plane behavior of through-tenon connections for several timber panel materials was characterized through an experimental campaign to determine the load-carrying capacity and slip modulus required for calculation models. Based on the test results, existing guidelines were evaluated to safely apply these connections in structural elements while a finite element model was developed to approximate their performance. This work constitutes a firm basis for the optimization of design guidelines and the creation of an extensive database on digitally produced wood-wood connections. Finally, this thesis provides a convenient design framework for the newly developed standardized timber construction system and a solid foundation for research into digitally produced wood-wood connections.
Online Access
Free
Resource Link
Less detail

Evaluation of the Structural Behaviour of Beam-Beam Connection Systems Using Compressed Wood Dowels and Plates

https://research.thinkwood.com/en/permalink/catalogue2050
Year of Publication
2018
Topic
Connections
Material
Glulam (Glue-Laminated Timber)
Application
Beams

Investigation on Elements Presenting Cracks in Timber Structures

https://research.thinkwood.com/en/permalink/catalogue477
Year of Publication
2014
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Franke, Steffen
Magnière, Noëlie
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Mechanical Properties
Keywords
Cracks
Numerical Model
Stiffness
Load Carrying Capacity
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Cracks in timber members influence the stiffness and load-carrying behaviour but only rudimentary rules are given to evaluate cracked members. Therefore, an investigation to gather information about the most frequent characteristics of cracked timber str...
Online Access
Free
Resource Link
Less detail

Load Carrying Capacity of Cracked Beams

https://research.thinkwood.com/en/permalink/catalogue1544
Year of Publication
2016
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Franke, Steffen
Franke, Bettina
Magnière, Noëlie
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Mechanical Properties
Keywords
Cracks
Stiffness
Modulus of Elasticity
Load Carrying Capacity
Numerical Investigations
Experimental Investigations
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1123-1130
Summary
The increasing number of wood structure amongst large and potentially public buildings gave a new impulse to the assessment of timber structures. For assessing the state of timber elements, cracks are a key indicator. Therefore, experimental and numerical investigations on not cracked and partly cracked timber members were carried...
Online Access
Free
Resource Link
Less detail

Long-term Performance of Timber Concrete Composite Floors

https://research.thinkwood.com/en/permalink/catalogue2081
Year of Publication
2018
Topic
Serviceability
Mechanical Properties
Acoustics and Vibration
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Floors

Numerical Modelling of Glulam Beams Externally Reinforced with CFRP Plates

https://research.thinkwood.com/en/permalink/catalogue1624
Year of Publication
2016
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Glišovic, Ivan
Pavlovic, Marko
Stevanovic, Boško
Todorovic, Marija
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Bending Behaviour
CFRP
Finite Element Model
Load Deflection
Stiffness
Load Carrying Capacity
Strain
Reinforcement
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2634-2641
Summary
Timber beams can effectively be reinforced using externally bonded fibre reinforced polymer (FRP) composites. This paper describes a nonlinear 3-dimensional finite element model which was developed in order to accurately simulate the bending behaviour of unreinforced and carbon FRP plate reinforced glulam beams. The model...
Online Access
Free
Resource Link
Less detail

Performance of Self-Tapping Screws and Threaded Steel Rods in Shear Reinforcement of Glulam Beams

https://research.thinkwood.com/en/permalink/catalogue1628
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Jockwer, Robert
Steiger, René
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Mechanical Properties
Keywords
Norway Spruce
Reinforcement
Self-Tapping Screws
Threaded Steel Rod
Stiffness
Strength
Load Carrying Capacity
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2813-2822
Summary
Norway spruce glulam beams with artificial horizontal slits of different length and depth were reinforced using self-tapping screws and threaded steel rods in order to restore their load-carrying capacity and stiffness. The study aimed at evaluating the effects of strength and stiffness of the applied reinforcing elements on the load-carrying capacity...
Online Access
Free
Resource Link
Less detail

Simple Cross-Laminated Timber Shear Connections with Spatially Arranged Screws

https://research.thinkwood.com/en/permalink/catalogue1716
Year of Publication
2018
Topic
Connections
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)

15 records – page 1 of 2.