Skip header and navigation

17 records – page 1 of 2.

Ambient Vibration Tests of a Cross-Laminated Timber Building

https://research.thinkwood.com/en/permalink/catalogue313
Year of Publication
2015
Topic
Wind
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Reynolds, Thomas
Harris, Richard
Chang, Wen-Shao
Bregulla, Julie
Bawcombe, Jonathan
Publisher
ICE Publishing
Year of Publication
2015
Country of Publication
United Kingdom
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Wind
Keywords
Damping
Dynamic Movement
In Situ
Multi-Storey
Stiffness
Modal Properties
Ambient Vibration Method
Language
English
Research Status
Complete
Series
Proceedings of the Institution of Civil Engineers - Construction Materials
ISSN
1747-6518
Online Access
Free
Resource Link
Less detail

Capacity-Based Design for Cross-Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1255
Year of Publication
2017
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Shahnewaz, Md
Tannert, Thomas
Alam, Shahria
Popovski, Marjan
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Mechanical Properties
Connections
Keywords
In-Plane Stiffness
Strength
Non-Linear Springs
Finite Element Analysis
Hysteretic Behaviour
Cyclic Loading
Language
English
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
The use of cross-laminated timber (CLT) in residential and non-residential buildings is becoming increasingly popular in North America. While the 2016 supplement to the 2014 edition of the Canadian Standard for Engineering Design in Wood, CSAO86, provides provisions for CLT structures used in platform type applications, it does not provide guidance for the in-plane...
Online Access
Payment Required
Resource Link
Less detail

A Comparative Analysis of Three Methods Used for Calculating Deflections for Multi-Storey Wood Shearwalls

https://research.thinkwood.com/en/permalink/catalogue1719
Year of Publication
2016
Topic
Mechanical Properties
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Wood Building Systems
Author
Newfield, Grant
Wang, Jasmine
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Wood Building Systems
Topic
Mechanical Properties
Keywords
Deformation
Drifts
Stiffness
Building Period
Base Shear
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4597-4604
Summary
With the introduction of 5 and 6-storey wood structures into the National Building Code of Canada 2015, it is important that guidance be provided to engineers to ensure that a reasonable design approach can be sought in the design of taller wood structures. The purpose of this technical paper is to compare various methods for calculating building...
Online Access
Free
Resource Link
Less detail

Experimental Testing of Hold Down Devices for Timber Frame Shear Walls

https://research.thinkwood.com/en/permalink/catalogue401
Year of Publication
2012
Topic
Connections
Material
Light Frame (Lumber+Panels)
Application
Shear Walls

Force Transfer Around Openings in CLT Shear Walls

https://research.thinkwood.com/en/permalink/catalogue256
Year of Publication
2014
Topic
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Pai, Sai
Organization
University of British Columbia
Year of Publication
2014
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Seismic
Mechanical Properties
Keywords
Openings
Transfer Forces
Strength
Stiffness
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Influence of Openings on the Shear Strength and Stiffness of Cross Laminated Timber (CLT) Panels

https://research.thinkwood.com/en/permalink/catalogue2710
Year of Publication
2020
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Shear Walls
Author
Aljuhmani, Ahmad
Ogasawawra, A.
Atsuzawa, E.
Alwashali, Hamood
Shegay, A. V.
Tafheem, Zasiah
Maeda, Masaki
Year of Publication
2020
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Shear Walls
Topic
Mechanical Properties
Keywords
Diagonal Compression Test
Openings
Lateral Strength
In-Plane Shear Stiffness
Panels
Language
English
Conference
World Conference on Earthquake Engineering
Research Status
Complete
Summary
In the last decade, cross laminated timber (CLT) has been receiving increasing attention as a promising construction material for multi-storey structures in areas of high seismicity. In Japan, application of CLT in building construction is still relatively new; however, there is increasing interest in CLT from researchers as well as construction companies. Furthermore, the Japanese government is providing construction cost subsidies for new CLT structures as it is a carbon neutral and sustainable material. The high shear and compressive strength of CLT makes it a good candidate for use as shear walls in mid-rise buildings. One important aspect of CLT walls, and one that is presently poorly understood, is the influence of openings on the shear carrying capacity. Openings are often necessary in CLT panels either in form of windows, doors, lift shaft openings or installation of building services. Concerning this aspect, the code regulations in Japan are relatively strict, such that if openings exceeded certain prescribed limits, the entire CLT panel is considered as a non-structural element, and its contribution to lateral strength is totally ignored. Furthermore, as the maximum opening size is usually governed by edge distance constraints, the size of openings that designers can use is inevitably limited by the standard sizes supplied by the manufacturers. As a result, designers are obligated to adopt very small opening size. This is thought to be a very conservative approach. The main purpose of this paper is to experimentally evaluate the influence of openings on seismic capacity; strength and stiffness reduction, as well as failure mode with changing opening size and opening aspect ratio. In addition, check the validity of the Japanese code regulations with regards to openings in CLT panels. In this study, six 5-layer CLT panels containing different openings were tested. The parameters considered include the size and layout of the opening. The panels were specifically designed with openings that would render them ineffective in resisting lateral loads according to the Japanese standard. However, in addition to the six panels, one panel without openings and one panel with openings that meet the Japanese standard was designed. All the CLT panels were tested in uniaxial diagonal compression in order to simulate pure shear loading. The CLT panels and the loading setup were designed such that the resulting failure mode will be governed by a shear mechanism. The main focus of the experiment was to relate the deterioration of the lateral strength and stiffness of the panels to the size and layout of the opening. The results showed that the panels with openings with the same area have relatively different failure direction and reduction factors for panel shear strength and stiffness, and that is due to the shear weak and strong direction that CLT panels have. Also, the effect of openings on the reduction of stiffness for CLT panels was found to be greater than their effect on the reduction of shear strength. The prescribed equation in the Japanese CLT Guidebook underpredicts stiffness reduction, and has discrepancies with regard to strength as the difference of panel strengths in weak and strong directions are not considered.
Online Access
Free
Resource Link
Less detail

In-Plane Stiffness of Cross-Laminated Timber Floors

https://research.thinkwood.com/en/permalink/catalogue1263
Year of Publication
2012
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Floors
Shear Walls

Lateral Resistance of Cross-Laminated Timber Panel-to-Panel Connections

https://research.thinkwood.com/en/permalink/catalogue1724
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Richardson, Benjamin
Hindman, Daniel
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Mechanical Properties
Keywords
Strength
Stiffness
Panel-to-Panel
Monotonic Loading
Cyclic Loading
Half-Lap
Butt-Joint
Steel Plate
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4655-4662
Summary
Cross laminated timber (CLT) connections in shearwalls require an understanding of the shear strength and stiffness of panel-to-panel connections within the wall. This research measures the strength and stiffness of three different panel-to-panel CLT connections considering both monotonic and cyclic loading. Connections included a...
Online Access
Free
Resource Link
Less detail

Linear Dynamic Analysis for Wood-Based Shear Walls and Podium Structures: Part 1: Developing Input Parameters for Linear Dynamic Analysis

https://research.thinkwood.com/en/permalink/catalogue740
Year of Publication
2013
Topic
Design and Systems
Mechanical Properties
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Author
Ni, Chun
Newfield, Grant
Wang, Jasmine
Organization
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Topic
Design and Systems
Mechanical Properties
Keywords
Deflection
Linear Dynamic Analysis
National Building Code of Canada
Stiffness
Floor Drifts
Language
English
Research Status
Complete
Summary
Utilizing Linear Dynamic Analysis (LDA) for designing steel and concrete structures has been common practice over the last 25 years. Once preliminary member sizes have been determined for either steel or concrete, building a model for LDA is generally easy as the member sizes and appropriate stiffness...
Online Access
Free
Resource Link
Less detail

Load Distribution in Inclined Self-Tapping Screw Connections with Steel Side Plates

https://research.thinkwood.com/en/permalink/catalogue2652
Topic
Mechanical Properties
Connections
Application
Shear Walls
Beams
Author
Joyce, Tom
Organization
University of Alberta
Country of Publication
Canada
Application
Shear Walls
Beams
Topic
Mechanical Properties
Connections
Keywords
Self-Tapping Screws
Steel Plates
Strength
Stiffness
Research Status
In Progress
Summary
The objective of this research is to develop a model to predict the distribution of loads within connections with multiple self-tapping screw fasteners and steel side plates, and use this model to predict the strength and stiffness of multiple-inclined self-tapping screw connections. These results would facilitate the design of large scale connections with long rows of self-tapping screw fasteners, such as may be used for mass timber shear wall connections or splice joints for long-span timber beams.
Resource Link
Less detail

17 records – page 1 of 2.