Skip header and navigation

114 records – page 1 of 12.

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Acoustic Performance of Innovative Composite Wood Stud Partition Walls

https://research.thinkwood.com/en/permalink/catalogue1181
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Acoustics and Vibration
Application
Walls
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Deng, James
Wang, Xiang-Ming
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Application
Walls
Topic
Design and Systems
Mechanical Properties
Acoustics and Vibration
Keywords
Sound Insulation
Manufacturing
Partition Walls
Steel
Language
English
Research Status
Complete
Summary
Airborne sound insulation performance of wall assemblies is a critical aspect which is directly associated with the comfort level of the occupants, which in turn affects the market acceptance. In single-family and low-rise residential buildings, the partition walls, whether loadbearing or non-loadbearing, are commonly framed with studs of solid sawn lumber of 2x4, 2x6, and 2x8. In commercial buildings and multi-storey residential buildings, the partition walls are commonly framed using light-gauge steel studs. The shortcomings of solid sawn lumber studs form the motivation for this project to develop wood studs that would address these shortcomings to promote greater wood use in partition walls. The conceptual design and fabrication work and the preliminary test results have shown that are partition-wall stud made out of composite wood material could have the same or better airborne sound insulation performance as compared to the 25 gauge steel stud. The concept is promising, with a manufacturing process and fabrication that would work and be practical.
Online Access
Free
Resource Link
Less detail

An Innovative Hybrid Timber Structure in Japan: Beam-to-Beam Moment Resisting Connection

https://research.thinkwood.com/en/permalink/catalogue1581
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Kusumoto, Shigeharu
Shioya, Shinichi
Kawabe, Ryosuke
Inomoto, Kotaro
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Mechanical Properties
Keywords
Steel Bars
Epoxy
Beam-to-Beam
Four Point Bending Test
Short-term
Long-term
Ductility
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 17911798
Summary
Hybrid composite glulam timber reinforced using deformed steel bars and epoxy resin adhesive (RGTSB), was significantly developed in Kagoshima University. In this paper, a beam-to-beam connection for RGTSB and experimental data on the connection are presented...
Online Access
Free
Resource Link
Less detail

An Innovative Hybrid Timber Structure in Japan: Experiments on the Long Term Behavior in Beam

https://research.thinkwood.com/en/permalink/catalogue1767
Year of Publication
2016
Topic
Serviceability
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Uchimura, Kohei
Shioya, Shinichi
Hira, Tomoka
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Serviceability
Keywords
Long-term
Mechanosorption
Creep
Steel Bars
Epoxy
Japan
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5234-5241
Summary
Hybrid composite glulam timber reinforced using deformed steel bars and epoxy resin adhesive (RGTSB), was significantly developed in Kagoshima University. A long term laboratory investigation on a 4.5-meter-span hybrid timber beam and a non-hybrid timber beam was started from August 2011. The beam was made of RGTSB and another was of conventional glulam timber...
Online Access
Free
Resource Link
Less detail

An Innovative Hybrid Timber Structure in Japan: Performance of Column and Beams

https://research.thinkwood.com/en/permalink/catalogue1759
Year of Publication
2016
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Columns
Author
Shioya, Shinichi
Koga, Takeshi
Kumon, Yuto
Otsuki, Kazuaki
Uchimura, Kohei
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Columns
Topic
Mechanical Properties
Keywords
Japanese Cedar
Reinforcement
Steel Bars
Epoxy
Flexural Stiffness
Flexural Strength
Reverse Cyclic Loading
Force-Displacement Curves
Strain Distribution
Failure
Numerical Analysis
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5058-5067
Summary
In this paper, bending behaviours in hybrid composite glulam timbers reinforced using deformed steel bars and epoxy resin adhesives (RGTSB) are presented. The technique RGTSB was developed in order to improve flexural stiffness and strength in glulam timbers...
Online Access
Free
Resource Link
Less detail

An Overview on Retrofit for Improving Building Energy Efficiency

https://research.thinkwood.com/en/permalink/catalogue365
Year of Publication
2015
Topic
Energy Performance
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Wang, Jieying
Ranger, Lindsay
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Concrete
Energy Consumption
Envelope
Retrofit
Single Family Houses
Steel
Language
English
Research Status
Complete
Summary
This literature review aims to provide a general picture of retrofit needs, markets, and commonly used strategies and measures to reduce building energy consumption, and is primarily focused on energy retrofit of the building envelope. Improving airtightness and thermal performance are the two key aspects...
Online Access
Free
Resource Link
Less detail

Behavior of Timber-Concrete Composite Beams with Two Types of Steel Dowel Connectors

https://research.thinkwood.com/en/permalink/catalogue1996
Year of Publication
2018
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
Application
Beams
Author
Molina, Julio
Calil Junior, Carlito
Year of Publication
2018
Country of Publication
South Korea
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Beams
Topic
Connections
Mechanical Properties
Keywords
Steel Dowels
Strength
Stiffness
Mohler Model
Shear Tests
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Bond Behavior Between Softwood Glulam and Epoxy Bonded-In Threaded Steel Rod

https://research.thinkwood.com/en/permalink/catalogue450
Year of Publication
2015
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Ling, Zhibin
Liu, Weiqing
Lam, Frank
Yang, Huifeng
Lu, Weidong
Publisher
American Society of Civil Engineers
Year of Publication
2015
Country of Publication
United States
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Design and Systems
Mechanical Properties
Keywords
Bonding Behavior
Failure Modes
Joints
Load Capacity
Softwood
Threaded Steel Rod
Pull-Pull
Language
English
Research Status
Complete
Series
Journal of Materials in Civil Engineering
Summary
This study aims to develop an improved understanding of the interfacial bond behavior of softwood glulam joints with bonded-in threaded steel rod. A total of 39 glulam joints with bonded-in single-threaded steel rods were tested to failure in the pull-pu...
Online Access
Free
Resource Link
Less detail

Braced Frame System for Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2527
Year of Publication
2020
Topic
Design and Systems
Seismic
Material
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Frames
Author
Iqbal, Asif
Organization
University of Northern British Columbia
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Frames
Topic
Design and Systems
Seismic
Keywords
Lateral Load Resisting Systems
Sustainability
Post-Tensioned
Connections
Braced Frame Model
Timber-Steel Hybrid
Language
English
Research Status
Complete
Summary
Advanced sustainable lateral load resisting systems that combine ductile and recyclable materials offer a viable solution to resist seismic load effects in environmentally responsible ways. This paper presents the seismic response of a post-tensioned timber-steel hybrid braced frame. This hybrid system combines glulam frame with steel braces to improve lateral stiffness while providing self-centreing capability under seismic loads. The proposed system is first presented. A detailed numerical model of the proposed system is then developed with emphasis on the connections and inelastic response of bracing members. Various types of braced frames including diagonal, cross and chevron configurations are numerically examined to assess the viability of the proposed concept and to confirm the efficiency of the system. A summary of initial findings is presented to demonstrate usefulness of the hybrid system. The results demonstrate that the proposed system increases overall lateral stiffness and ductility while still being able to achieve self-centring. Some additional information on connection details are provided for implementation in practical structures. The braced-frame solution is expected to widen options for lateral load resisting systems for mid-to-high-rise buildings.
Online Access
Free
Resource Link
Less detail

CLT Infill Panels in Steel Moment Resisting Frames as a Hybrid Seismic Force Resisting System

https://research.thinkwood.com/en/permalink/catalogue107
Year of Publication
2013
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Combination of Steel Plate Shear Walls and Timber Moment Frames for Improved Seismic Performance

https://research.thinkwood.com/en/permalink/catalogue2735
Year of Publication
2020
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Frames
Author
Iqbal, Asif
Todorov, Borislav
Billah, Muntasir
Year of Publication
2020
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Frames
Topic
Seismic
Keywords
Timber Moment Frames
Steel Plate Shear Walls
Hybrid
Seismic Performance
Interstory Drifts
Language
English
Conference
World Conference on Earthquake Engineering
Research Status
Complete
Summary
Recent interests in adopting sustainable materials and developments in construction technology have created a trend of aiming for greater heights with timber buildings. With the increased height these buildings are subjected to higher level of lateral load demand. A common and efficient way to increase capacity is to use shearwalls, which can resist significant part of the load on the structures. Prefabricated mass timber panels such as those made of Cross-Laminated Timber (CLT) can be used to form the shearwalls. But due to relatively low stiffness value of timber it is often difficult to keep the maximum drifts within acceptable limit prescribed by building codes. It becomes necessary to either increase wall sizes to beyond available panel dimensions or use multiple or groups of walls spread over different locations over the floor plan. Both of the options are problematic from the economic and functional point of view. One possible alternative is to adopt a Hybrid system, using Steel Plate Shear Walls (SPSW) with timber moment frames. The SPSW has much higher stiffness and combined with timber frames it can reduce overall building drifts significantly. Frames with prefabricated timber members have considerable lateral load capacity. For structures located in seismic regions the system possesses excellent energy dissipation ability with combination of ductile SPSW and yielding elements within the frames. This paper investigates combination of SPSW with timber frames for seismic applications. Numerical model of the system has been developed to examine the interaction between the frames and shear walls under extreme lateral load conditions. Arrangements of different geometries of frames and shear walls are evaluated to determine their compatibility and efficiency in sharing lateral loads. Recommendations are presented for optimum solutions as well as practical limits of applications.
Online Access
Free
Resource Link
Less detail

114 records – page 1 of 12.