Skip header and navigation

3 records – page 1 of 1.

Behaviour of FRP Retrofitted Glued-Laminated (Glulam) Beams Subjected to Simulated Blast Loads

https://research.thinkwood.com/en/permalink/catalogue1550
Year of Publication
2016
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Lacroix, Daniel
Doudak, Ghasan
Year of Publication
2016
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Retrofitted
Static Loads
Dynamic Loads
GFRP
Damage
Predictive Model
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1207-1214
Summary
Preliminary results from an experimental program investigating the behaviour of retrofitted glulam beams subjected to static and dynamic loads are presented in this paper. The effect of glass fibre-reinforced-polymer (GFRP) laminates applied on the tension side was investigated under both static and dynamic loading as a potential retrofit on undamaged specimens. Furthermore, previously damaged beams were restored by applying GFRP confinement to the damaged region. The experimental results showed that the capacity of the retrofitted beams was improved significantly and the restored beams attained a significant level of their original dynamic capacity. Future work involves the development of a material predictive model that can account for the high-strain rate effects as well as investigating more retrofit options.
Online Access
Free
Resource Link
Less detail

Behaviour of Glued-Laminated (Glulam) Beams and Columns Subjected to Simulated Blast Loads

https://research.thinkwood.com/en/permalink/catalogue1549
Year of Publication
2016
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Columns
Author
Lacroix, Daniel
Doudak, Ghasan
Year of Publication
2016
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Columns
Topic
Mechanical Properties
Keywords
Blast Loads
Static Loads
Dynamic Loads
Dynamic Tests
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1199-1206
Summary
This paper presents preliminary results from an experimental program investigating the dynamic behaviour of glulam beams and columns subjected to simulated blast loads. A total of eight glulam beams and columns were tested destructively under static and dynamic loads. Based on the dynamic tests conducted on the beams, an increase in strength under dynamic loading, relative to that measured under the static loading, was observed. A material predictive model that accounts for high strain-rate effects is developed. The experimental displacement-time histories were reasonably well predicted through a single-degree-of-freedom approach which used the proposed resistance model as input.
Online Access
Free
Resource Link
Less detail

Thin Topping Timber-Concrete Composite Floors

https://research.thinkwood.com/en/permalink/catalogue902
Year of Publication
2014
Topic
Design and Systems
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Author
Skinner, Jonathan
Organization
University of Bath
Year of Publication
2014
Format
Thesis
Material
Timber-Concrete Composite
Application
Floors
Topic
Design and Systems
Mechanical Properties
Keywords
Stiffness
Vibration Response
Topping Thickness
Screws
shear connectors
Static Loads
Cyclic Loads
Short-term
Bending Tests
Research Status
Complete
Summary
A timber-concrete composite (TCC) combines timber and concrete, utilising the complementary properties of each material. The composite is designed in such a way that the timber resists combined tension and bending, whilst the concrete resists combined compression and bending. This construction technique can be used either in new build construction, or in refurbishment, for upgrading existing timber structures. Its use is most prolific in continental Europe, Australasia, and the United States of America but has yet to be widely used in the United Kingdom. To date, the topping upgrades used have been 40mm thick or greater. Depending on the choice of shear connection, this can lead to a four-fold increase in strength and stiffness of the floor. However, in many practical refurbishment situations, such a large increase in stiffness is not required, therefore a thinner topping can suffice. The overarching aim of this study has been to develop a thin (20mm) topping timber-concrete composite upgrade with a view to improving the serviceability performance of existing timber floors. Particular emphasis was given to developing an understanding of how the upgrade changes the stiffness and transient vibration response of a timber floor. Initially, an analytical study was carried out to define an appropriate topping thickness. An experimental testing programme was then completed to: characterise suitable shear connectors under static and cyclic loads, assess the benefit of the upgrade to the short-term bending performance of panels and floors, and evaluate the influence of the upgrade on the transient vibration response of a floor. For refurbishing timber floors, a 20mm thick topping sufficiently increased the bending stiffness and improved the transient vibration response. The stiffness of the screw connectors was influenced by the thickness of the topping and the inclination of the screws. During the short-term bending tests, the gamma method provided a non-conservative prediction of composite bending stiffness. In the majority of cases the modal frequencies of the floors tested increased after upgrade, whilst the damping ratios decreased. The upgrade system was shown to be robust as cracking of the topping did not influence the short-term bending performance of panels. Thin topping TCC upgrades offer a practical and effective solution to building practitioners, for improving the serviceability performance of existing timber floors.
Online Access
Free
Resource Link
Less detail