Skip header and navigation

31 records – page 1 of 4.

Agricultural Buildings With Timber Structure - Preventative Chemical Wood Preservation Inevitably Required?

https://research.thinkwood.com/en/permalink/catalogue1914
Year of Publication
2018
Topic
Moisture
Application
Wood Building Systems
Author
Jiang, Yuan
Dietsch, Philipp
Winter, Stefan
Year of Publication
2018
Country of Publication
Korea
Format
Conference Paper
Application
Wood Building Systems
Topic
Moisture
Keywords
Moisture Content
Spruce
Agriculture
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 20-23,2018. Seoul, Republic of Korea
Online Access
Free
Resource Link
Less detail

Bending Properties of Cross Laminated Timber (CLT) with a 45° Alternating Layer Configuration

https://research.thinkwood.com/en/permalink/catalogue319
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Buck, Dietrich
Wang, Alice
Hagman, Olle
Gustafsson, Anders
Publisher
North Carolina State University
Year of Publication
2016
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Bending Test
Norway Spruce
Four Point Bending Test
Alternating Layer
Language
English
Research Status
Complete
Series
BioResources
Summary
Bending tests were conducted with cross laminated timber (CLT) panels made using an alternating layer arrangement. Boards of Norway spruce were used to manufacture five-layer panels on an industrial CLT production line. In total, 20 samples were tested, consisting of two CLT configurations with 10 samples of each type: transverse layers at 45° and the conventional 90° arrangement. Sample dimensions were 95 mm × 590 mm × 2000 mm. The CLT panels were tested by four point bending in the main load-carrying direction in a flatwise panel layup. The results indicated that bending strength increased by 35% for elements assembled with 45° layers in comparison with 90° layers. Improved mechanical load bearing panel properties could lead to a larger span length with less material.
Online Access
Free
Resource Link
Less detail

Bending, Shear, and Compressive Properties of Three- and Five-Layer Cross-Laminated Timber Fabricated with Black Spruce

https://research.thinkwood.com/en/permalink/catalogue2589
Year of Publication
2020
Topic
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
He, Minjuan
Sun, Xiaofeng
Li, Zheng
Feng, Wei
Publisher
SpringerOpen
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Mechanical Properties
Keywords
Black Spruce
Panels
Bending
Thickness
Language
English
Research Status
Complete
Series
Journal of Wood Science
Summary
Cross-laminated timber (CLT) is an innovative engineering wood product made by gluing layers of solid-sawn lumber at perpendicular angles. The commonly used wood species for CLT manufacturing include spruce-pine-fir (SPF), douglas fir-larch, and southern pine lumber. With the hope of broadening the wood species for CLT manufacturing, the purposes of this study include evaluating the mechanical properties of black spruce CLT and analyzing the influence of CLT thickness on its bending or shear properties. In this paper, bending, shear, and compressive tests were conducted respectively on 3-layer CLT panels with a thickness of 105 mm and on 5-layer CLT panels with a thickness of 155 mm, both of which were fabricated with No. 2-grade Canadian black spruce. Their bending or shear resisting properties as well as the failure modes were analyzed. Furthermore, comparison of mechanical properties was conducted between the black spruce CLT panels and the CLT panels fabricated with some other common wood species. Finally, for both the CLT bending panels and the CLT shear panels, their numerical models were developed and calibrated with the experimental results. For the CLT bending panels, results show that increasing the CLT thickness whilst maintaining identical span-to-thickness ratios can even slightly reduce the characteristic bending strength of the black spruce CLT. For the CLT shear panels, results show that increasing the CLT thickness whilst maintaining identical span-to-thickness ratios has little enhancement on their characteristic shear strength. For the CLT bending panels, their effective bending stiffness based on the Shear Analogy theory can be used as a more accurate prediction on their experiment-based global bending stiffness. The model of the CLT bending specimens is capable of predicting their bending properties; whereas, the model of the CLT shear specimens would underestimate their ultimate shear resisting capacity due to the absence of the rolling shear mechanism in the model, although the elastic stiffness can be predicted accurately. Overall, it is attested that the black spruce CLT can provide ideal bending or shear properties, which can be comparable to those of the CLT fabricated with other commonly used wood species. Besides, further efforts should focus on developing a numerical model that can consider the influence of the rolling shear mechanism.
Online Access
Free
Resource Link
Less detail

Bending Tests with Glulam Columns under Eccentric Normal Force Stress

https://research.thinkwood.com/en/permalink/catalogue1138
Year of Publication
2015
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Frangi, Andrea
Theiler, Matthias
Organization
ETH Zurich
Year of Publication
2015
Country of Publication
Switzerland
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Topic
Mechanical Properties
Keywords
Load Bearing Capacity
Axial Compression
Buckling Tests
Spruce
Language
German
Research Status
Complete
Summary
The force-displacement behaviour of structural timber members subjected to axial compression or combined axial compression and bending is distinctively non-linear. This behaviour is caused by the non-linear increase of the deformation due to the increasing eccentricity of the axial load as well as by the non-linear material behaviour of timber when subjected to compression. The present report describes experimental investigations on glued laminated timber members subjected to eccentric compression. The aim of these experimental investigations was to create a data base, which can be used to validate theoretical calculation models and to assess the accurateness of the design approaches given in the design codes for timber structures. The specimens for the main bunch of experiments were produced using lamellas made of Norway spruce grown in Switzerland. For this purpose, a total of 336 lamellas were available. In the first step, non-destructive tests on the lamellas were performed. These tests aimed at the collection of data in order to characterise the raw material. In the second step, the lamellas were strength graded. The aim of the grading process was to select two classes of lamellas for the production of the test specimens. The lamellas were selected so that they were suitable to produce glued laminated timber of strength classes GL24h and GL32h. Within the grading process, visual grading criteria as well as machine grading criteria were used. In the third step, the graded lamellas were used to produce glued laminated timber members. Five tests series were produced. Each of the test series consisted of ten specimens. Three series were made of glued laminated timber GL24h and two series were made of glued laminated timber GL32h. The length of the timber members was varied between the different test series. The lengths were L = 1’400 mm, L = 2’300 mm and L = 3’200 mm respectively. During the production, the setup of the test specimens was recorded. Hence, the position and the orientation of every lamella within the test specimen were documented. Additionally, some non-destructive tests were performed using the test specimens. In the last step, the glued laminated timber members were subjected to buckling tests. The test specimens were loaded with an eccentric compression force up to failure. During the tests, different measurements were carried out in order to document the experimental investigations as accurate as possible. Amongst others, the applied loads as well as horizontal and vertical deformations were recorded. For a subsample of 20 test specimens, additional local deformation measurements were performed using an optical measurement device.
Online Access
Free
Resource Link
Less detail

Damping in Timber Structures

https://research.thinkwood.com/en/permalink/catalogue106
Year of Publication
2012
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Floors
Beams
Author
Labonnote, Nathalie
Organization
Norwegian University of Science and Technology
Year of Publication
2012
Country of Publication
Norway
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Floors
Beams
Topic
Design and Systems
Keywords
Damping
Model
Panels
Spruce
Testing
Vibrations
Language
English
Research Status
Complete
Summary
Key point to development of environmentally friendly timber structures, appropriate to urban ways of living, is the development of high-rise timber buildings. Comfort properties are nowadays one of the main limitations to tall timber buildings, and an enhanced knowledge on damping phenomena is therefore required, as well as improved prediction models for damping. The aim of this work has consequently been to estimate various damping quantities in timber structures. In particular, models have been derived for predicting material damping in timber members, beams or panels, or in more complex timber structures, such as floors. Material damping is defined as damping due to intrinsic material properties, and used to be referred to as internal friction. In addition, structural damping, defined as damping due to connections and friction in-between members, has been estimated for timber floors.
Online Access
Free
Resource Link
Less detail

Development of Modular System in Midrise to Tall Wood Buildings Phase II

https://research.thinkwood.com/en/permalink/catalogue2530
Year of Publication
2020
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Zhang, Chao
Organization
Timber Engineering and Applied Mechanics (TEAM) Laboratory
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Keywords
Openings
Lateral Performance
Shear Walls
SPF
Spruce-Pine-Fir
Loading Tests
Language
English
Research Status
Complete
Summary
This project studied the effect of openings on the lateral performance of CLT shear walls and the system behavior of the walls in a module. Three-layer Cross Laminated Timber (CLT) was used for manufacturing the wall and module specimens. The laminar was Spruce-Pine-Fir (SPF) #2&Better for both the major and minor layers. Each layer was 35 mm thick. The panel size was 2.44 m × 2.44 m. Four configurations of walls were investigated: no opening, 25% opening, 37.5% opening, and 50% opening. The opening was at the center of the wall and in the shape of a square. A CLT module was made from two walls with 50% openings, with an overall thickness of 660 mm. The specimens were tested under monotonic loading and reverse-cyclic loading, in accordance with ASTM E564-06 (2018) and ASTM E2126-19. The wall without opening had an average peak load of 111.8 kN. It had little internal deformation and the failure occurred at the connections. With a 25% opening, deformation within the wall was observed but the failure remained at the connections. It had the same peak load as the full wall. When the opening was increased to 37.5%, the peak load decreased by 6% to 104.9 kN and the specimens failed in wood at the corners of the opening. Further increasing the opening to 50%, the peak load dropped drastically to 63.4 kN, only 57% of the full wall. The load-displacement relationship was approximately linear until the load reached 60% of the peak or more. Compared to the full wall, the wall with 25% opening had 65% of the stiffness. When the opening increased to 37.5% and 50%, the stiffness reduced to 50% and 24% of the full wall, respectively. The relationship between stiffness and opening ratio was approximately linear. The loading protocol had effect on the peak load but not on the stiffness. There was more degradation for larger openings under reverse-cyclic loading. The performance of the module indicated the presence of system effect that improves the ductility of the wall, which is important for the seismic performance of the proposed midrise to tall wood buildings. The test data was compared to previous models found in literature. Simplified analytical models were also developed to estimate the lateral stiffness and strength of CLT wall with openings.
Online Access
Free
Resource Link
Less detail

Effect of Growth Ring Orientation on the Rolling Shear Properties of Wooden Cross Layer Under Two-Plate Shear Test

https://research.thinkwood.com/en/permalink/catalogue635
Year of Publication
2014
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Zhou, Qinyi
Gong, Meng
Chui, Ying Hei
Mohammad, Mohammad
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Growth Ring Orientation
Rolling Shear Modulus
Rolling Shear Strength
Spruce
Two-plate shear test
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The design and application of cross laminated timber (CLT) is s trongly influenced by rolling shear properties of cross layers. Hence, predicting the mechanical behaviour of CLT requires accurate information about its rolling shear properties. In this study, black spruce wood laminates with three different growth ring orientations (flat sawn, in-between, quarter sawn) were edge glued to produce wooden cross layer (WCL). Two-plate shear tests were carried out on WCL to investigate the influence of growth ring orientation on the rolling shear properties. The experimental results showed that the growth ring orientation had a significant effect on rolling shear modulus of WCL, however, almost no effect on the rolling shear strength. The WCL of in-between end grain had the maximum rolling shear modulus of 89MPa and rolling sh ear strength of 2.13 MPa.
Online Access
Free
Resource Link
Less detail

Effects of the Thickness of Cross-Laminated Timber (CLT) Panels Made from Irish Sitka Spruce on Mechanical Performance in Bending and Shear

https://research.thinkwood.com/en/permalink/catalogue990
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Sikora, Karol
McPolin, Daniel
Harte, Annette
Publisher
ScienceDirect
Year of Publication
2016
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Sitka Spruce
Thickness
Bending Stiffness
Rolling Shear Strength
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
An investigation was carried out on CLT panels made from Sitka spruce in order to establish the effect of the thickness of CLT panels on the bending stiffness and strength and the rolling shear. Bending and shear tests on 3-layer and 5-layer panels were performed with loading in the out-of-plane and in-plane directions. ‘Global’ stiffness measurements were found to correlate well with theoretical values. Based on the results, there was a general tendency that both the bending strength and rolling shear decreased with panel thickness. Mean values for rolling shear ranged from 1.0 N/mm2 to 2.0 N/mm2.
Online Access
Free
Resource Link
Less detail

Experimental Analysis of the Structural Behavior of Timber-Concrete Composite Slabs Made of Beech-Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue611
Year of Publication
2013
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
LVL (Laminated Veneer Lumber)
Application
Floors
Author
Boccadoro, Lorenzo
Frangi, Andrea
Publisher
American Society of Civil Engineers
Year of Publication
2013
Country of Publication
United States
Format
Journal Article
Material
Timber-Concrete Composite
LVL (Laminated Veneer Lumber)
Application
Floors
Topic
Connections
Mechanical Properties
Keywords
Beech
Spruce
Load Carrying Capacity
Structural Behavior
Failure Modes
Notch Connections
Language
English
Research Status
Complete
Series
Journal of Performance of Constructed Facilities
Summary
The wood engineering community has dedicated a significant amount of effort over the last decades to establish a reliable predictive model for the load-carrying capacity of timber connections under wood failure mechanisms. Test results from various sources (Foschi and Longworth 1975; Johnsson 2003; Quenneville and Mohammad 2000; Stahl et al. 2004; Zarnani and Quenneville 2012a) demonstrate that for multi-fastener connections, failure of wood can be the dominant mode. In existing wood strength prediction models for parallel to grain failure in timber connections using dowel-type fasteners, different methods consider the minimum, maximum or the summation of the tensile and shear capacities of the failed wood block planes. This results in disagreements between the experimental values and the predictions. It is postulated that these methods are not appropriate since the stiffness in the wood blocks adjacent to the tensile and shear planes differs and this leads to uneven load distribution amongst the resisting planes (Johnsson 2004; Zarnani and Quenneville 2012a). The present study focuses on the nailed connections. A closed-form analytical method to determine the load-carrying capacity of wood under parallel-to-grain loading in small dowel-type connections in timber products is thus proposed. The proposed stiffness-based model has already been verified in brittle and mixed failure modes of timber rivet connections (Zarnani and Quenneville 2013b).
Online Access
Free
Resource Link
Less detail

Experimental Investigation of Cracked End-notched Glulam Beams Repaired with GFRP Bars

https://research.thinkwood.com/en/permalink/catalogue2444
Year of Publication
2019
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams

31 records – page 1 of 4.