Skip header and navigation

30 records – page 1 of 3.

Agricultural Buildings With Timber Structure - Preventative Chemical Wood Preservation Inevitably Required?

https://research.thinkwood.com/en/permalink/catalogue1914
Year of Publication
2018
Topic
Moisture
Material
Timber (unspecified)
Application
Wood Building Systems
General Application
Author
Jiang, Yuan
Dietsch, Philipp
Winter, Stefan
Year of Publication
2018
Country of Publication
Korea
Format
Conference Paper
Material
Timber (unspecified)
Application
Wood Building Systems
General Application
Topic
Moisture
Keywords
Moisture Content
Spruce
Agriculture
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 20-23,2018. Seoul, Republic of Korea
Online Access
Free
Resource Link
Less detail

Bending Properties of Cross Laminated Timber (CLT) with a 45° Alternating Layer Configuration

https://research.thinkwood.com/en/permalink/catalogue319
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
General Application
Author
Buck, Dietrich
Wang, Alice
Hagman, Olle
Gustafsson, Anders
Publisher
North Carolina State University
Year of Publication
2016
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
General Application
Topic
Mechanical Properties
Keywords
Bending Test
Norway Spruce
Four Point Bending Test
Alternating Layer
Language
English
Research Status
Complete
Series
BioResources
Online Access
Free
Resource Link
Less detail

Bending Tests with Glulam Columns under Eccentric Normal Force Stress

https://research.thinkwood.com/en/permalink/catalogue1138
Year of Publication
2015
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
General Application

Damping in Timber Structures

https://research.thinkwood.com/en/permalink/catalogue106
Year of Publication
2012
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Floors
Beams

Effect of Growth Ring Orientation on the Rolling Shear Properties of Wooden Cross Layer Under Two-Plate Shear Test

https://research.thinkwood.com/en/permalink/catalogue635
Year of Publication
2014
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
General Application
Author
Zhou, Qinyi
Gong, Meng
Chui, Ying Hei
Mohammad, Mohammad
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
General Application
Topic
Mechanical Properties
Keywords
Growth Ring Orientation
Rolling Shear Modulus
Rolling Shear Strength
Spruce
Two-plate shear test
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The design and application of cross laminated timber (CLT) is s trongly influenced by rolling shear properties of cross layers. Hence, predicting the mechanical behaviour of CLT requires accurate information about its rolling shear properties. In this st...
Online Access
Free
Resource Link
Less detail

Effects of the Thickness of Cross-Laminated Timber (CLT) Panels Made from Irish Sitka Spruce on Mechanical Performance in Bending and Shear

https://research.thinkwood.com/en/permalink/catalogue990
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
General Application

Experimental Analysis of the Structural Behavior of Timber-Concrete Composite Slabs Made of Beech-Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue611
Year of Publication
2013
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
LVL (Laminated Veneer Lumber)
Application
Floors
Author
Boccadoro, Lorenzo
Frangi, Andrea
Publisher
American Society of Civil Engineers
Year of Publication
2013
Country of Publication
United States
Format
Journal Article
Material
Timber-Concrete Composite
LVL (Laminated Veneer Lumber)
Application
Floors
Topic
Connections
Mechanical Properties
Keywords
Beech
Spruce
Load Carrying Capacity
Structural Behavior
Failure Modes
Notch Connections
Language
English
Research Status
Complete
Series
Journal of Performance of Constructed Facilities
Summary
Composite, timber-concrete slabs as structural floor systems for office and residential buildings, offer several technical advantages over traditional, exclusively timber floors. The connection between timber and concrete in current systems made of spruc...
Online Access
Free
Resource Link
Less detail

Experimental Study on Flexural Performance of Glued-Laminated-Timber-Bamboo Beams

https://research.thinkwood.com/en/permalink/catalogue1387
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Material
Other Materials
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Xu, Qingfeng
Leng, Yubing
Chen, Xi
Harries, Kent
Chen, Lingzhu
Wang, Zhuolin
Publisher
Springer Netherlands
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
Other Materials
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Design and Systems
Mechanical Properties
Keywords
Bamboo
Spruce
Douglas-Fir
Flexural Performance
Strengthening
Language
English
Research Status
Complete
Series
Materials and Structures
ISSN
1871-6873
Online Access
Free
Resource Link
Less detail

Experimental Testing of Glued Laminated Timber Members using Ultrasonic and Stress Wave Techniques

https://research.thinkwood.com/en/permalink/catalogue151
Year of Publication
2015
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
General Application

Exploring Cross-Laminated Timber Use for Temporary Military Structures: Ballistic Considerations

https://research.thinkwood.com/en/permalink/catalogue2371
Year of Publication
2018
Topic
Design and Systems
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Sanborn, Kathryn
Publisher
Georgia Institute of Technology
Year of Publication
2018
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Market and Adoption
Keywords
Ballistic Resistance
Panels
Military Structures
Blast Analysis Tool
Spruce-Pine-Fir
Southern Pine
SPF
Language
English
Research Status
Complete
Summary
The design and construction of temporary military structures has changed little since World War II. While these structures are lightweight and rapidly deployable, they require a sizeable workforce to construct and provide minimal ballistic and blast protection for occupants. Cross-laminated timber (CLT) is a relatively new prefabricated engineered wood product that is strong, stiff, quick to build, and has the potential to offer inherent ballistic and blast resistance compared to traditional wood products. The orthotropic nature of CLT coupled with the energy absorbing capacity of the thick wood panels warrant further investigation into the viability of CLT for temporary military structures. To that end, the research presented in this thesis seeks to better understand the ballistic and blast response of CLT panels and to develop evaluation criteria for the use of CLT in temporary military structures. Specific areas of investigation included: 1) experimental testing of the ballistic resistance of CLT panels, conducting in conjunction with U.S. Army laboratories in Aberdeen Proving Grounds, Maryland and Vicksburg, Mississippi; 2) the design, prototyping, and experimental testing of enhanced CLT panels to further improve ballistic performance; 3) a qualitative analysis of CLT panels under ballistic impact resistance mechanisms; 4) the development of a CLT blast analysis tool to predict the elastic response of CLT to blast loadings; and 5) the development of a simplified tool to identify evaluation criteria for temporary military structure material selection, including conventional materials as well as CLT. Specimens in this research consisted of commercially produced Spruce-Pine-Fir CLT as well as Southern Pine CLT specimens fabricated specifically for this research. Ballistic testing of both types of conventional CLT indicate that the material’s inherent penetration resistance is significantly greater than that of dimension lumber and plywood used in current common temporary military structures. The testing shows that current U.S. military design guidelines (UFC 4-023-07), used for determining required wood thickness based on ballistic threat, under predicts the ballistic performance of CLT. From testing and analysis, the thesis develops updated equations for predicting the thickness of CLT required for ballistic protection. A qualitative analysis of ballistic specimens identified local failure modes in the CLT and links the observed damage the anisotropic material properties, grading, and defects in sawn timbers. Enhanced CLT specimens were fabricated using various hardening materials including thin metal plates and gratings, polymer-based armors, and fiber-reinforced epoxy matrix panels. The enhanced CLTs were evaluated based on ease of production, ballistic resistance as compared to conventional CLT, and cost-benefit analysis. The shear analogy method was incorporated into a single-degree-of-freedom blast analysis to predict the response of different types and sizes of CLT panels under blast loads within the elastic regime. The tool was validated using field data from low-level live blast tests and showed good agreement with the field data. Finally, tailored evaluation criteria for comparative assessment of construction materials for use in temporary military structures – considering issues of cost, the logistics of in-theater deployment, energy consumption and force protection were developed and applied through using the AHP decision-making process.
Online Access
Free
Resource Link
Less detail

30 records – page 1 of 3.