Skip header and navigation

33 records – page 1 of 4.

Agricultural Buildings With Timber Structure - Preventative Chemical Wood Preservation Inevitably Required?

https://research.thinkwood.com/en/permalink/catalogue1914
Year of Publication
2018
Topic
Moisture
Material
Timber (unspecified)
Application
Wood Building Systems
General Application
Author
Jiang, Yuan
Dietsch, Philipp
Winter, Stefan
Year of Publication
2018
Country of Publication
Korea
Format
Conference Paper
Material
Timber (unspecified)
Application
Wood Building Systems
General Application
Topic
Moisture
Keywords
Moisture Content
Spruce
Agriculture
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 20-23,2018. Seoul, Republic of Korea
Online Access
Free
Resource Link
Less detail

Bending Properties of Cross Laminated Timber (CLT) with a 45° Alternating Layer Configuration

https://research.thinkwood.com/en/permalink/catalogue319
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
General Application
Author
Buck, Dietrich
Wang, Alice
Hagman, Olle
Gustafsson, Anders
Publisher
North Carolina State University
Year of Publication
2016
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
General Application
Topic
Mechanical Properties
Keywords
Bending Test
Norway Spruce
Four Point Bending Test
Alternating Layer
Language
English
Research Status
Complete
Series
BioResources
Online Access
Free
Resource Link
Less detail

Bending, Shear, and Compressive Properties of Three- and Five-Layer Cross-Laminated Timber Fabricated with Black Spruce

https://research.thinkwood.com/en/permalink/catalogue2589
Year of Publication
2020
Topic
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
He, Minjuan
Sun, Xiaofeng
Li, Zheng
Feng, Wei
Publisher
SpringerOpen
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Mechanical Properties
Keywords
Black Spruce
Panels
Bending
Thickness
Language
English
Research Status
Complete
Series
Journal of Wood Science
Summary
Cross-laminated timber (CLT) is an innovative engineering wood product made by gluing layers of solid-sawn lumber at perpendicular angles. The commonly used wood species for CLT manufacturing include spruce-pine-fir (SPF), douglas fir-larch, and southern pine lumber. With the hope of broadening the wood species for CLT manufacturing, the purposes of this study include evaluating the mechanical properties of black spruce CLT and analyzing the influence of CLT thickness on its bending or shear properties. In this paper, bending, shear, and compressive tests were conducted respectively on 3-layer CLT panels with a thickness of 105 mm and on 5-layer CLT panels with a thickness of 155 mm, both of which were fabricated with No. 2-grade Canadian black spruce. Their bending or shear resisting properties as well as the failure modes were analyzed. Furthermore, comparison of mechanical properties was conducted between the black spruce CLT panels and the CLT panels fabricated with some other common wood species. Finally, for both the CLT bending panels and the CLT shear panels, their numerical models were developed and calibrated with the experimental results. For the CLT bending panels, results show that increasing the CLT thickness whilst maintaining identical span-to-thickness ratios can even slightly reduce the characteristic bending strength of the black spruce CLT. For the CLT shear panels, results show that increasing the CLT thickness whilst maintaining identical span-to-thickness ratios has little enhancement on their characteristic shear strength. For the CLT bending panels, their effective bending stiffness based on the Shear Analogy theory can be used as a more accurate prediction on their experiment-based global bending stiffness. The model of the CLT bending specimens is capable of predicting their bending properties; whereas, the model of the CLT shear specimens would underestimate their ultimate shear resisting capacity due to the absence of the rolling shear mechanism in the model, although the elastic stiffness can be predicted accurately. Overall, it is attested that the black spruce CLT can provide ideal bending or shear properties, which can be comparable to those of the CLT fabricated with other commonly used wood species. Besides, further efforts should focus on developing a numerical model that can consider the influence of the rolling shear mechanism.
Online Access
Free
Resource Link
Less detail

Bending Tests with Glulam Columns under Eccentric Normal Force Stress

https://research.thinkwood.com/en/permalink/catalogue1138
Year of Publication
2015
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
General Application

Damping in Timber Structures

https://research.thinkwood.com/en/permalink/catalogue106
Year of Publication
2012
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Floors
Beams

Development of Modular System in Midrise to Tall Wood Buildings Phase II

https://research.thinkwood.com/en/permalink/catalogue2530
Year of Publication
2020
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Zhang, Chao
Organization
Timber Engineering and Applied Mechanics (TEAM) Laboratory
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Keywords
Openings
Lateral Performance
Shear Walls
SPF
Spruce-Pine-Fir
Loading Tests
Language
English
Research Status
Complete
Summary
This project studied the effect of openings on the lateral performance of CLT shear walls and the system behavior of the walls in a module. Three-layer Cross Laminated Timber (CLT) was used for manufacturing the wall and module specimens. The laminar was Spruce-Pine-Fir (SPF) #2&Better for both the major and minor layers. Each layer was 35 mm thick. The panel size was 2.44 m × 2.44 m. Four configurations of walls were investigated: no opening, 25% opening, 37.5% opening, and 50% opening. The opening was at the center of the wall and in the shape of a square. A CLT module was made from two walls with 50% openings, with an overall thickness of 660 mm. The specimens were tested under monotonic loading and reverse-cyclic loading, in accordance with ASTM E564-06 (2018) and ASTM E2126-19. The wall without opening had an average peak load of 111.8 kN. It had little internal deformation and the failure occurred at the connections. With a 25% opening, deformation within the wall was observed but the failure remained at the connections. It had the same peak load as the full wall. When the opening was increased to 37.5%, the peak load decreased by 6% to 104.9 kN and the specimens failed in wood at the corners of the opening. Further increasing the opening to 50%, the peak load dropped drastically to 63.4 kN, only 57% of the full wall. The load-displacement relationship was approximately linear until the load reached 60% of the peak or more. Compared to the full wall, the wall with 25% opening had 65% of the stiffness. When the opening increased to 37.5% and 50%, the stiffness reduced to 50% and 24% of the full wall, respectively. The relationship between stiffness and opening ratio was approximately linear. The loading protocol had effect on the peak load but not on the stiffness. There was more degradation for larger openings under reverse-cyclic loading. The performance of the module indicated the presence of system effect that improves the ductility of the wall, which is important for the seismic performance of the proposed midrise to tall wood buildings. The test data was compared to previous models found in literature. Simplified analytical models were also developed to estimate the lateral stiffness and strength of CLT wall with openings.
Online Access
Free
Resource Link
Less detail

Effect of Growth Ring Orientation on the Rolling Shear Properties of Wooden Cross Layer Under Two-Plate Shear Test

https://research.thinkwood.com/en/permalink/catalogue635
Year of Publication
2014
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
General Application
Author
Zhou, Qinyi
Gong, Meng
Chui, Ying Hei
Mohammad, Mohammad
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
General Application
Topic
Mechanical Properties
Keywords
Growth Ring Orientation
Rolling Shear Modulus
Rolling Shear Strength
Spruce
Two-plate shear test
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The design and application of cross laminated timber (CLT) is s trongly influenced by rolling shear properties of cross layers. Hence, predicting the mechanical behaviour of CLT requires accurate information about its rolling shear properties. In this st...
Online Access
Free
Resource Link
Less detail

Effects of the Thickness of Cross-Laminated Timber (CLT) Panels Made from Irish Sitka Spruce on Mechanical Performance in Bending and Shear

https://research.thinkwood.com/en/permalink/catalogue990
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
General Application

Experimental Analysis of the Structural Behavior of Timber-Concrete Composite Slabs Made of Beech-Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue611
Year of Publication
2013
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
LVL (Laminated Veneer Lumber)
Application
Floors
Author
Boccadoro, Lorenzo
Frangi, Andrea
Publisher
American Society of Civil Engineers
Year of Publication
2013
Country of Publication
United States
Format
Journal Article
Material
Timber-Concrete Composite
LVL (Laminated Veneer Lumber)
Application
Floors
Topic
Connections
Mechanical Properties
Keywords
Beech
Spruce
Load Carrying Capacity
Structural Behavior
Failure Modes
Notch Connections
Language
English
Research Status
Complete
Series
Journal of Performance of Constructed Facilities
Summary
Composite, timber-concrete slabs as structural floor systems for office and residential buildings, offer several technical advantages over traditional, exclusively timber floors. The connection between timber and concrete in current systems made of spruc...
Online Access
Free
Resource Link
Less detail

Experimental Investigation of Cracked End-notched Glulam Beams Repaired with GFRP Bars

https://research.thinkwood.com/en/permalink/catalogue2444
Year of Publication
2019
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams

33 records – page 1 of 4.