Skip header and navigation

5 records – page 1 of 1.

Bending and Rolling Shear Capacities of Southern Pine Cross Laminated Timber (CLT)

https://research.thinkwood.com/en/permalink/catalogue1596
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
General Application
Author
Gu, Mengzhe
Pang, Weichiang
Stoner, Michael
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
General Application
Topic
Mechanical Properties
Keywords
Southern Pine
US
Manufacturing
Rolling Shear
Bending
Three Point Bending Test
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1899-1906
Summary
Southern Pine (SP) is one of the fastest growing softwood species in the Southern Forest of United States. With its high strength to weight ratio, SP becomes an ideal candidate for manufacturing engineered wood products such as cross laminated timber (CLT). Two batches of CLT panels were manufactured using visually graded SP lumbers in...
Online Access
Free
Resource Link
Less detail

Development of Southern Pine Cross-Laminated Timber for Building Code Acceptance

https://research.thinkwood.com/en/permalink/catalogue474
Year of Publication
2014
Topic
Acoustics and Vibration
Fire
Mechanical Properties
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
General Application
Author
Hindman, Daniel
Bouldin, John
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
General Application
Topic
Acoustics and Vibration
Fire
Mechanical Properties
Market and Adoption
Keywords
Southern Pine
Fire Performance
Acoustical Performance
International Building Code
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The current interest and growth of cross laminated timber (CLT) products has spurred interest in the manufacture of CLTs in the United States. The purpose of this paper is to explore the development of CLT materials from southern pine lumber commonly ava...
Online Access
Free
Resource Link
Less detail

Durability of Structural Lumber Products after Exposure at 82C and 80% Relative Humidity

https://research.thinkwood.com/en/permalink/catalogue784
Year of Publication
2005
Topic
Mechanical Properties
Moisture
Material
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Solid-sawn Heavy Timber
Application
General Application
Author
Green, David
Evans, James
Hatfield, Cherilyn
Byrd, Pamela
Organization
Forest Products Laboratory
Year of Publication
2005
Country of Publication
United States
Format
Report
Material
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Solid-sawn Heavy Timber
Application
General Application
Topic
Mechanical Properties
Moisture
Keywords
Aspen
Douglas-Fir
Modulus of Elasticity
Modulus of Rupture
Southern Pine
Poplar
Relative Humidity
SPF
Temperature
Flexural Properties
Language
English
Research Status
Complete
Summary
Solid-sawn lumber (Douglas-fir, southern pine, Spruce– Pine–Fir, and yellow-poplar), laminated veneer lumber (Douglas-fir, southern pine, and yellow-poplar), and laminated strand lumber (aspen and yellow-poplar) were heated continuously at 82°C (180...
Online Access
Free
Resource Link
Less detail

Effect of Adhesives and Ply Configuration on the Fire Performance of Southern Pine Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1682
Year of Publication
2016
Topic
Connections
Fire
Material
CLT (Cross-Laminated Timber)
Application
General Application
Author
Hasburgh, Laura
Bourne, Keith
Peralta, Perry
Mitchell, Phil
Schiff, Scott
Pang, Weichiang
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
General Application
Topic
Connections
Fire
Keywords
Southern Pine
Adhesives
Ply Configuration
Fire Performance
Melamine Formaldehyde
Phenol-Resorcinol Formaldehyde
Polyurethane
Emulsion Polymer Isocyanate
Delamination
Char Rate
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4031-4038
Summary
Thirteen Southern pine cross-laminated timber panels were tested in the intermediate scale horizontal furnace at the Forest Products Laboratory to determine the effects different adhesives and ply configuration had on fire performance. Four different adhesives were tested...
Online Access
Free
Resource Link
Less detail

Exploring Cross-Laminated Timber Use for Temporary Military Structures: Ballistic Considerations

https://research.thinkwood.com/en/permalink/catalogue2371
Year of Publication
2018
Topic
Design and Systems
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Sanborn, Kathryn
Publisher
Georgia Institute of Technology
Year of Publication
2018
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Market and Adoption
Keywords
Ballistic Resistance
Panels
Military Structures
Blast Analysis Tool
Spruce-Pine-Fir
Southern Pine
SPF
Language
English
Research Status
Complete
Summary
The design and construction of temporary military structures has changed little since World War II. While these structures are lightweight and rapidly deployable, they require a sizeable workforce to construct and provide minimal ballistic and blast protection for occupants. Cross-laminated timber (CLT) is a relatively new prefabricated engineered wood product that is strong, stiff, quick to build, and has the potential to offer inherent ballistic and blast resistance compared to traditional wood products. The orthotropic nature of CLT coupled with the energy absorbing capacity of the thick wood panels warrant further investigation into the viability of CLT for temporary military structures. To that end, the research presented in this thesis seeks to better understand the ballistic and blast response of CLT panels and to develop evaluation criteria for the use of CLT in temporary military structures. Specific areas of investigation included: 1) experimental testing of the ballistic resistance of CLT panels, conducting in conjunction with U.S. Army laboratories in Aberdeen Proving Grounds, Maryland and Vicksburg, Mississippi; 2) the design, prototyping, and experimental testing of enhanced CLT panels to further improve ballistic performance; 3) a qualitative analysis of CLT panels under ballistic impact resistance mechanisms; 4) the development of a CLT blast analysis tool to predict the elastic response of CLT to blast loadings; and 5) the development of a simplified tool to identify evaluation criteria for temporary military structure material selection, including conventional materials as well as CLT. Specimens in this research consisted of commercially produced Spruce-Pine-Fir CLT as well as Southern Pine CLT specimens fabricated specifically for this research. Ballistic testing of both types of conventional CLT indicate that the material’s inherent penetration resistance is significantly greater than that of dimension lumber and plywood used in current common temporary military structures. The testing shows that current U.S. military design guidelines (UFC 4-023-07), used for determining required wood thickness based on ballistic threat, under predicts the ballistic performance of CLT. From testing and analysis, the thesis develops updated equations for predicting the thickness of CLT required for ballistic protection. A qualitative analysis of ballistic specimens identified local failure modes in the CLT and links the observed damage the anisotropic material properties, grading, and defects in sawn timbers. Enhanced CLT specimens were fabricated using various hardening materials including thin metal plates and gratings, polymer-based armors, and fiber-reinforced epoxy matrix panels. The enhanced CLTs were evaluated based on ease of production, ballistic resistance as compared to conventional CLT, and cost-benefit analysis. The shear analogy method was incorporated into a single-degree-of-freedom blast analysis to predict the response of different types and sizes of CLT panels under blast loads within the elastic regime. The tool was validated using field data from low-level live blast tests and showed good agreement with the field data. Finally, tailored evaluation criteria for comparative assessment of construction materials for use in temporary military structures – considering issues of cost, the logistics of in-theater deployment, energy consumption and force protection were developed and applied through using the AHP decision-making process.
Online Access
Free
Resource Link
Less detail