Skip header and navigation

3 records – page 1 of 1.

Acoustic Performance of All-Wood Floor Systems

https://research.thinkwood.com/en/permalink/catalogue1931
Year of Publication
2017
Topic
Acoustics and Vibration
Material
Light Frame (Lumber+Panels)
Application
Floors
Organization
APA
Year of Publication
2017
Country of Publication
United States
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Sound Transmission Class
Impact Isolation Class
Code
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Guide to Calculating Airborne Sound Transmission in Buildings: Fifth Edition, December 2019

https://research.thinkwood.com/en/permalink/catalogue2617
Year of Publication
2019
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Walls
Author
Hoeller, Christoph
Quirt, David
Mahn, Jeffrey
Müller-Trapet, Markus
Organization
National Research Council of Canada. Construction
Publisher
National Research Council of Canada. Construction
Year of Publication
2019
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Walls
Topic
Acoustics and Vibration
Design and Systems
Keywords
Apparent Sound Transmission Class
Sound Insulation
Sound Transmission
Concrete
Building Code
Impact Sound
Language
English
Research Status
Complete
Summary
In recent years, the science and engineering for controlling sound transmission in buildings have shifted from a focus on individual assemblies such as walls or floors, to a focus on performance of the complete system. Standardized procedures for calculating the overall transmission, combined with standardized measurements to characterize sub-assemblies, provide much better prediction of sound transmission between adjacent indoor spaces. The International Standards Organization (ISO) has published a calculation method, ISO 15712-1 that uses laboratory test data for sub-assemblies such as walls and floors as inputs for a detailed procedure to calculate the expected sound transmission between adjacent rooms in a building. This standard works very well for some types of construction, but to use it in a North American context one must overcome two obstacles – incompatibility with the ASTM standards used by our construction industry, and low accuracy of its predictions for lightweight wood or steel frame construction. To bypass limitations of ISO 15712-1, this Guide explains how to merge ASTM and ISO test data in the ISO calculation procedure, and provides recommendations for applying extended measurement and calculation procedures for specific common types of construction. This Guide was developed in a project established by the National Research Council of Canada to support the transition of construction industry practice to using apparent sound transmission class (ASTC) for sound control objectives in the National Building Code of Canada (NBCC). However, the potential range of application goes beyond the minimum requirements of the NBCC – the Guide also facilitates design to provide enhanced sound insulation, and should be generally applicable to construction in both Canada and the USA. This publication contains a limited set of examples for several types of construction, to provide an introduction and overview of the ASTC calculation procedure. Additional examples and measurement data can be found in the companion documents to this Guide, namely NRC Research Reports RR-333 to RR-337. Furthermore, the calculation procedure outlined and illustrated in this Guide is also used by the software web application soundPATHS, which is available for free on the website of the National Research Council of Canada (see the references in Section 7 of this Guide for access details).
Online Access
Free
Resource Link
Less detail

Serviceability of Next-Generation Wood Buildings: Sound Insulation Performance of Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue402
Year of Publication
2014
Topic
Acoustics and Vibration
Serviceability
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Floors
Walls
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Floors
Walls
Topic
Acoustics and Vibration
Serviceability
Keywords
Apparent Sound Insulation Class
Field Sound Insulation Class
Apparently Sound Transmission Class
Field Sound Transmission Class
Language
English
Research Status
Complete
Summary
This report documents apparent/field impact insulation class (AIIC/FIIC) ratings and apparent/field sound transmission class (ASTC/FSTC) ratings for a large number of light-frame wood-joisted floors, cross-laminated timber floors (CLT), massive glulam floors, and a wood-concrete composite floor. The report includes various construction details involving finishings, membranes under finishings, toppings, underlayment materials for toppings, and drywall ceilings. This report also documents ASTC/FSTC ratings for some light-frame wood stud walls and CLT walls. The informal subjective evaluation of field floors and walls by FPInnovations staff, and by occupants, revealed that, if a FSTC or FIIC rating is below 45, occupants could clearly hear sound generated by their neighbor’s normal activities. If a FSTC or FIIC rating is above 50, occupants could still hear "muffled" sound generated by their neighbor’s normal activities, but do not hear it as clearly. If a FSTC or FIIC rating is above 60, occupants could not hear any sound generated by their neighbor’s activities, except when there is a lightweight floor with a carpet. In that case, low frequency footsteps could be heard even if the FIIC was above 60.
Online Access
Free
Resource Link
Less detail