Skip header and navigation

25 records – page 2 of 3.

Apparent Sound Insulation in Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2616
Year of Publication
2020
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Author
Mahn, Jeffrey
Quirt, David
Mueller-Trapet, Markus
Hoeller, Christoph
Organization
National Research Council of Canada. Construction
Publisher
National Research Council of Canada. Construction
Year of Publication
2020
Format
Report
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Topic
Acoustics and Vibration
Design and Systems
Keywords
Airborne Sound Transmission
Apparent Sound Transmission Class
Sound Transmission
Adhesive
Research Status
Complete
Summary
This Report presents the results from experimental studies of the airborne sound transmission of mass timber assemblies, together with an explanation of the calculation procedures to predict the apparent sound transmission class (ASTC) rating between adjacent spaces in a building constructed of mass timber assemblies. The experimental data which is the foundation for this Report includes the laboratory measured sound transmission loss of wall and floor assemblies constructed of Cross Laminated Timber (CLT), Nail-Laminated Timber (NLT) and Dowel-Laminated Timber (DLT), and the laboratory measured vibration reduction index between assemblies of junctions between CLT assemblies. The presentation of the measured data is combined with the presentation of the appropriate calculation procedures to determine the ASTC rating in buildings comprised of such assemblies along with numerous worked examples. Several types of CLT constructions are commercially available in Canada, but this study focused on CLT assemblies with an adhesive applied between the faces of the timber elements in adjacent layers, but no adhesive bonding between the adjacent timber elements within a given layer. These CLT assemblies could be called “Face-Laminated CLT Assemblies” but are simply referred to as CLT assemblies in this Report. Another form of CLT assemblies does have adhesive applied between the faces of the timber elements in adjacent layers as well as adhesive to bond the adjacent timber elements within a given layer. These assemblies are referred to as “Fully-Bonded CLT Assemblies” in this Report. Because fully-bonded CLT assemblies have different properties than face-laminated CLT assemblies, the sound transmission data and predictions in this Report do not apply to fully-bonded CLT assemblies.
Online Access
Free
Resource Link
Less detail

Apparent Sound Insulation in Wood-Framed Buildings

https://research.thinkwood.com/en/permalink/catalogue1952
Year of Publication
2017
Topic
Acoustics and Vibration
Material
Light Frame (Lumber+Panels)
Application
Walls
Floors
Author
Hoeller, Christoph
Quirt, David
Mueller-Trapet, Markus
Organization
National Research Council of Canada
Year of Publication
2017
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Walls
Floors
Topic
Acoustics and Vibration
Keywords
Sound Transmission
Research Status
Complete
Summary
This Report presents the results from substantial experimental studies of sound transmission, together with an explanation of calculation procedures to predict the sound transmission between adjacent spaces in a building with wood-framed walls and floors. This Report presents two types of experimental data for wood-framed constructions: - Test data for direct sound transmission through typical wood-framed wall assemblies and wood-framed floor assemblies, plus a summary of trends for such constructions and references to compilations of additional data - Test data for flanking sound transmission measured following the procedures of ISO 10848 for coupled wall/floor junctions and wall/wall junctions Worked examples for calculating the apparent sound transmission class (ASTC) rating between adjacent dwelling units are presented to illustrate how the experimental data can be applied.
Online Access
Free
Resource Link
Less detail

Development of Robust Design Details for Improved Acoustics in Mass Timber Construction

https://research.thinkwood.com/en/permalink/catalogue2249
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
Université du Québec à Chicoutimi
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Model
Airborne Sound Transmission
Impact Sound Transmission
Research Status
In Progress
Notes
Project contact is Sylvain Ménard at Université du Québec à Chicoutimi (Canada)
Summary
To ensure the acoustic performance of wood constructions, the research group at the Sustainable Building Institute at Napier University has established a series of proven solutions. The advantage of this approach is to provide designers with solutions that have been technically validated, thus allowing them to overcome the burden of proposing to the manufacturer an acoustic solution. The tools to develop this concept will involve an understanding of the propagation of impact and airborne noises in the main CLT building design typologies, validating the main solutions through laboratory testing and providing proven solutions. Many NRC (National Research Council of Canada) trials could have been avoided. Conducting tests is expensive, and it would be interesting to link the test results to the modeling results.
Less detail

Experimental Study on Air Tone Interruption Performance of CLT Panel Wall

https://research.thinkwood.com/en/permalink/catalogue1802
Year of Publication
2016
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Tanaka, Manabu
Kasai, Yusuke
Murakami, Tsuyoshi
Kawaya, Shoji
Publisher
J-STAGE
Year of Publication
2016
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Acoustics and Vibration
Keywords
Sound Transmission
Panels
Experimental Tests
Sound Insulation
Research Status
Complete
Series
Japanese Architectural Institute Environmental Papers
Online Access
Free
Resource Link
Less detail

Guide to Calculating Airborne Sound Transmission in Buildings: Fifth Edition, December 2019

https://research.thinkwood.com/en/permalink/catalogue2617
Year of Publication
2019
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Walls
Author
Hoeller, Christoph
Quirt, David
Mahn, Jeffrey
Müller-Trapet, Markus
Organization
National Research Council of Canada. Construction
Publisher
National Research Council of Canada. Construction
Year of Publication
2019
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Walls
Topic
Acoustics and Vibration
Design and Systems
Keywords
Apparent Sound Transmission Class
Sound Insulation
Sound Transmission
Concrete
Building Code
Impact Sound
Research Status
Complete
Summary
In recent years, the science and engineering for controlling sound transmission in buildings have shifted from a focus on individual assemblies such as walls or floors, to a focus on performance of the complete system. Standardized procedures for calculating the overall transmission, combined with standardized measurements to characterize sub-assemblies, provide much better prediction of sound transmission between adjacent indoor spaces. The International Standards Organization (ISO) has published a calculation method, ISO 15712-1 that uses laboratory test data for sub-assemblies such as walls and floors as inputs for a detailed procedure to calculate the expected sound transmission between adjacent rooms in a building. This standard works very well for some types of construction, but to use it in a North American context one must overcome two obstacles – incompatibility with the ASTM standards used by our construction industry, and low accuracy of its predictions for lightweight wood or steel frame construction. To bypass limitations of ISO 15712-1, this Guide explains how to merge ASTM and ISO test data in the ISO calculation procedure, and provides recommendations for applying extended measurement and calculation procedures for specific common types of construction. This Guide was developed in a project established by the National Research Council of Canada to support the transition of construction industry practice to using apparent sound transmission class (ASTC) for sound control objectives in the National Building Code of Canada (NBCC). However, the potential range of application goes beyond the minimum requirements of the NBCC – the Guide also facilitates design to provide enhanced sound insulation, and should be generally applicable to construction in both Canada and the USA. This publication contains a limited set of examples for several types of construction, to provide an introduction and overview of the ASTC calculation procedure. Additional examples and measurement data can be found in the companion documents to this Guide, namely NRC Research Reports RR-333 to RR-337. Furthermore, the calculation procedure outlined and illustrated in this Guide is also used by the software web application soundPATHS, which is available for free on the website of the National Research Council of Canada (see the references in Section 7 of this Guide for access details).
Online Access
Free
Resource Link
Less detail

Impact Sound Insulation in Wood Multi-Family Buildings

https://research.thinkwood.com/en/permalink/catalogue2623
Year of Publication
2012
Topic
Acoustics and Vibration
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2012
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Design and Systems
Keywords
Mid-Rise
High-Rise
Sound Transmission
Research Status
Complete
Summary
The number of occupant complaints received about annoying low-frequency footstep impact sound transmission through wood floor-ceiling assemblies has been increasing in proportion with the increase in the number of multi-family wood buildings built. Little work has been conducted to develop solutions to control the low-frequency footstep impact sound transmission. There are no code provisions or sound solutions in the codes. Current construction practices are based on a trial and error approach. This two-years project was conducted to remove this barrier and to successfully expand the use of wood in the multi-family and mid- to high-rise building markets. The key objective was to build a framework for the development of thorough solutions to control low-frequency footstep sound transmission through wood floor-ceiling assemblies. Field acoustic tests and case studies were conducted in collaboration with acoustics researchers, builders, developers, architects, design engineers and producers of wood building components. The field study found that: 1. With proper design of the base wood-joisted floors and sound details of the ceiling: With no topping on the floor, the floor-ceiling assembly did not provide sufficient impact sound insulation for low- to high-frequency sound components ; Use of a 13-mm thick wood composite topping along with the ceiling did not ensure satisfactory impact sound insulation; Even if there was the ceiling, use of a 38-mm thick concrete topping without a proper insulation layer to float the topping did not ensure satisfactory impact sound insulation ; A topping system having a mass over 20 kg/m2 and composed of composite panels and an insulation layer with proper thickness achieved satisfactory impact sound insulation. 2. The proper design of the base wood-joisted floors was achieved by the correct combination of floor mass and stiffness. The heaviest wood-joisted floors did not necessarily ensure satisfactory impact insulation. 3. Proper sound ceiling details were found to be achieved through: Use of two layers of gypsum board; Use of sound absorption materials filling at least 50% of the cavity ; Installation of resilient channels to the bottom of the joists through anchoring acoustic system resulted in improved impact sound insulation than directly attaching the resilient channels to the bottom of the joists. A four-task research plan was developed to thoroughly address the issue of poor low-frequency footstep impact insulation of current lightweight wood floor-ceiling assemblies and to correct prejudice against wood. The tasks include: 1) fundamental work to develop code provisions; 2) expansion of FPInnovations’ material testing laboratory to include tests to characterize the acoustic properties of materials; 3) development of control strategies; and 4) implementation. The laboratory acoustic research facility built includes a mock-up field floor-ceiling assembly with adjustable span and room height, a testing system and a building acoustic simulation software. The preliminary study on the effects of flooring, topping and underlayment on FIIC of the mock-up of the filed floor-ceiling assembly in FPInnovations’ acoustic chamber confirmed some findings from the field study. The laboratory study found that: A topping was necessary to ensure the satisfactory impact sound insulation; The topping should be floated on proper underlayment; Topping mass affects impact sound insulation of wood framed floors; A floating flooring enhanced the impact sound insulation of wood framed floors along with the floating topping. It is concluded that: 1. even if the studies only touched the tip of the iceberg of the footstep impact sound insulation of lightweight wood-joisted floor systems, the proposed solutions are promising but still need verification ; 2. with proper design of the base wood floor structure, the proper combination of flooring, and sound ceiling details along with proper installation, the lightweight wood floor-ceiling assembly can achieve satisfactory impact sound insulation ; 3. this study establishes a framework for thoroughly solving low-frequency footstep impact sound insulation problem in lightweight wood-joisted floor systems. Solutions will be developed in the next phase of this study as planned and the study will be conducted under NRCan Transformative Technology program with a project dedicated to “Serviceability of next generation wood building systems”.
Online Access
Free
Resource Link
Less detail

In-Situ performance testing of a six-storey wood-frame building in Victoria: building vibration, and sound insulation

https://research.thinkwood.com/en/permalink/catalogue3036
Year of Publication
2021
Topic
Acoustics and Vibration
Application
Wood Building Systems
Author
Mazloomi, Mohammad-Sadegh
Organization
FPInnovations
Year of Publication
2021
Format
Report
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Wood-Frame Building
Ambient Vibration Testing
Acoustic Testing
Apparent Sound Transmission Class
Apparent Impact Insulation Performance
Natural Frequency
Damping Ratio
Research Status
Complete
Summary
FPInnovations has been conducting a series of field testing on mid-rise and tall-wood buildings including this 6-storey wood-frame building in Victoria to measure their dynamic performance.The general objectives of the field measurements of the building wind-induced vibrations and sound insulation performance are: to develop improved knowledge and assemble a database of wind-induced vibration and sound insulation performance of mid-rise and tall-wood buildings, especially prefabricated wood construction; to verify the application of the NBCC design method for wind-induced vibration control for wood construction; and to verify the design tools used by designers for controlling the wind-induced vibrations and noise in mid-rise and tall-wood buildings.
Online Access
Free
Resource Link
Less detail

In-Situ Testing at Wood Innovation and Design Centre: Floor Vibration, Building Vibration, and Sound Insulation Performance

https://research.thinkwood.com/en/permalink/catalogue284
Year of Publication
2015
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Author
Hu, Lin
Pirvu, Ciprian
Ramzi, Redouane
Organization
FPInnovations
Year of Publication
2015
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Topic
Acoustics and Vibration
Keywords
Natural Frequency
Damping Ratio
Static Deflection Testing
Vibration Performance
Sound Transmission
Research Status
Complete
Summary
In order to address the lack of measured natural frequencies and damping ratios for wood and hybrid wood buildings, and lack of knowledge of vibration performance of innovative CLT floors and sound insulation performance of CLT walls and floors, FPInnovations conducted a series of performance testing at the Wood Innovation Design Centre (WIDC) in Prince George, BC in April 2014, during construction, and in May 2015, after building completion and during its occupation. This report describes the building, tested floor and wall assemblies, test methods, and summarizes the test results. The preliminary performance data provides critical feedback on the design of the building for resisting wind-induced vibration and on the floor vibration controlled design. The data can be further used to validate the calculation methods and tools/models of dynamic analysis.
Online Access
Free
Resource Link
Less detail

In-Situ Testing of the Wood Innovation and Design Centre for Serviceability Performance

https://research.thinkwood.com/en/permalink/catalogue1183
Year of Publication
2018
Topic
Serviceability
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Serviceability
Acoustics and Vibration
Keywords
Vibration Performance
Sound Insulation
Natural Frequencies
Damping Ratios
Ambient Vibration Testing
Apparent Sound Transmission Class
Apparent Impact Insulation Class
Research Status
Complete
Summary
Three performance attributes of a building for serviceability performance are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies. Serviceability performance of a building is important as it affects the comfort of its occupants and the functionality of sensitive equipment as well. Many physical factors influence these performances. Designers use various parameters to account for them in their designs and different criteria to manage these performances. The overall objectives of this stud were threefold: 1. The vibration performance tests were to experimentally determine the dynamic properties, e.g., natural frequencies (periods) and damping ratios of the WIDC building through ambient vibration testing on: (1) the bare structure in 2014, (2) the finished building upon completion of the construction with occupants in 2015, and (3) the finished building after 3 years of service in 2017. 2. The floor vibration tests were to evaluate vibration performance of the innovative CLT floor based on the bare floor fundamental natural frequency, 1 kN static deflection, and subjective evaluation. 3. The sound transmission tests were to determine the Apparent Sound Transmision Class (ASTC) and Apparent Impact Insulation Class (AIIC) of selected innovative CLT floor assemblies.
Online Access
Free
Resource Link
Less detail

Inventory of Acoustically-Tested Mass Timber Assemblies

https://research.thinkwood.com/en/permalink/catalogue2639
Year of Publication
2020
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Floors
Walls
Organization
WoodWorks
Year of Publication
2020
Format
Report
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Floors
Walls
Topic
Acoustics and Vibration
Keywords
Mass Timber
Sound Transmission Class
Impact Isolation Class
Assembly
Research Status
Complete
Summary
Following is a list of mass timber assemblies that have been acoustically tested as of November 10, 2022. Sources are noted at the end of this document.
Online Access
Free
Resource Link
Less detail

25 records – page 2 of 3.