Skip header and navigation

20 records – page 1 of 2.

Behaviour of Mechanically Laminated CLT Members

https://research.thinkwood.com/en/permalink/catalogue291
Year of Publication
2015
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Kuklík, Petr
Velebil, Lukáš
Publisher
IOP Publishing Ltd
Year of Publication
2015
Country of Publication
Latvia
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Connections
Mechanical Properties
Keywords
Shear Stress
Torsional Stiffness
Slip Modulus
Lamination
Language
English
Conference
International Conference on Innovative Materials, Structures and Technologies
Research Status
Complete
Notes
September 30-October 2 2015, Riga, Latvia
Summary
Cross laminated timber (CLT) is one of the structural building systems based on the lamination of multiple layers, where each layer is oriented perpendicularly to each other. Recent requirements are placed to develop an alternative process based on the mechanical lamination of the layers, which is of particular interest to our research group at the University Centre for Energy Efficient Buildings. The goal is to develop and verify the behaviour of mechanically laminated CLT wall panels exposed to shear stresses in the plane. The shear resistance of mechanically jointed CLT is ensured by connecting the layers by screws. The paper deals with the experimental analysis focused on the determination of the torsional stiffness and the slip modulus of crossing areas for different numbers of orthogonally connected layers. The results of the experiments were compared with the current analytical model.
Online Access
Free
Resource Link
Less detail

Bond Behavior between Glulam and GFRP’s by Pullout Tests

https://research.thinkwood.com/en/permalink/catalogue560
Year of Publication
2011
Topic
Connections
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Author
Sena-Cruz, José
Branco, Jorge
Jorge, Marco
Barros, Joaquim
Silva, Catarina
Cunha, Vitor
Publisher
ScienceDirect
Year of Publication
2011
Country of Publication
Netherlands
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Connections
Design and Systems
Keywords
GFRP
Bond behavior
Pull-Out Tests
Stress-Slip
Language
English
Research Status
Complete
Series
Composites Part B: Engineering
Summary
To evaluate the bond behavior between glulam and GFRP rods, applied according to the nearsurface mounted strengthening technique, an experimental program composed of beam and direct pullout tests was carried. In this experimental program three main variables were analyzed: the GFRP type, the GFRP location into the groove, and the bond length. From the monitoring system it was registered the loaded and free end slips, and the pullout force. Based on these experimental results, and applying an analytical-numerical strategy, the local bond stress-slip relationship was calculated. In this work the tests are described, the obtained results are presented and discussed, and the applicability of the inverse analysis to obtain the local bond law is demonstrated.
Online Access
Free
Resource Link
Less detail

Bond Between Glulam and NSM CFRP Laminates

https://research.thinkwood.com/en/permalink/catalogue331
Year of Publication
2013
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Author
Sena-Cruz, José
Jorge, Marco
Branco, Jorge
Cunha, Vitor
Publisher
ScienceDirect
Year of Publication
2013
Country of Publication
Netherlands
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Design and Systems
Keywords
Carbon Fiber Reinforced Polymer
Pull-Out Tests
Bond behavior
Stress-Slip
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
With the aim of evaluating the bond behaviour between glulam and carbon fibre reinforced polymer laminates strips, an experimental program using pull-out tests was carried, when the near-surface strengthening technique is applied. Two main variables were studied: the bond length and the type of pull-out test configuration. The instrumentation included the loaded and free-end slips, as well as the pullout force. Based on the obtained experimental results, and applying an analytical-numerical strategy, the local bond stress-slip relationship was determined. In this work the tests are described, the obtained results are presented and analysed, and the applicability of an inverse analysis to obtain the local bond law is demonstrated.
Online Access
Free
Resource Link
Less detail

Deconstructable Timber-Concrete Composite Connectors

https://research.thinkwood.com/en/permalink/catalogue2740
Year of Publication
2020
Topic
Connections
Material
Timber-Concrete Composite
Glulam (Glue-Laminated Timber)
Application
Floors
Author
Derikvand, Mohammad
Fink, Gerhard
Publisher
Society of Wood Science & Technology
Year of Publication
2020
Format
Conference Paper
Material
Timber-Concrete Composite
Glulam (Glue-Laminated Timber)
Application
Floors
Topic
Connections
Keywords
Deconstructable Connections
Deconstructable Connector
TCC
Push-Out Tests
Shear Strength
Slip Modulus
Failure Mode
Self-Tapping Screws
Language
English
Conference
Society of Wood Science and Technology International Convention
Research Status
Complete
Summary
The application of deconstructable connectors in timber-concrete composite (TCC) floors enables the possibility of disassembly and reuse of timber materials at the end of building’s life. This paper introduces the initial concept of a deconstructable TCC connector comprised of a self-tapping screw embedded in a plug made of rigid polyvinyl chloride and a level adjuster made of silicone rubber. This connection system is versatile and can be applied for prefabrication and in-situ concrete casting of TCC floors in both wet-dry and dry-dry systems. The paper presents the results of preliminary tests on the shear performance of four different configurations of the connector system in T-section glulam-concrete composites. The shear performance is compared to that of a permanent connector made with the same type of self-tapping screw. The failure modes observed are also analyzed to provide technical information for further optimization of the connector in the future.
Online Access
Free
Resource Link
Less detail

Development of Novel Standardized Structural Timber Elements Using Wood-Wood Connections

https://research.thinkwood.com/en/permalink/catalogue2747
Year of Publication
2020
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
Author
Gamerro, Julien
Publisher
Lausanne, EPFL
Year of Publication
2020
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Connections
Keywords
Timber Construction
Connections
Digital Fabrication
Design for Manufacturing and Assembly
Structural Design
Structural Frameworks
Semi-Rigid Connection
Experimental
Shear Strength
Compression Strength
Wood-Wood Connections
Bending Test
Bending Stiffness
Numerical Model
Load Carrying Capacity
Slip Modulus
Language
English
Research Status
Complete
Summary
Traditional wood-wood connections, widely used in the past, have been progressively replaced by steel fasteners and bonding processes in modern timber constructions. However, the emergence of digital fabrication and innovative engineered timber products have offered new design possibilities for wood-wood connections. The design-to-production workflow has evolved considerably over the last few decades, such that a large number of connections with various geometries can now be easily produced. These connections have become a cost-competitive alternative for the edgewise connection of thin timber panels. Several challenges remain in order to broaden the use of this specific joining technique into common timber construction practice: (1) prove the applicability at the building scale, (2) propose a standardized construction system, (3) develop a convenient calculation model for practice, and (4) investigate the mechanical behavior of wood-wood connections. The first building implementation of digitally produced through-tenon connections for a folded-plate structure is presented in this work. Specific computational tools for the design and manufacture of more than 300 different plates were efficiently applied in a multi-stakeholder project environment. Cross-laminated timber panels were investigated for the first time, and the potential of such connections was demonstrated for different engineered timber products. Moreover, this work demonstrated the feasibility of this construction system at the building scale. For a more resilient and locally distributed construction process, a standardized system using through-tenon connections and commonly available small panels was developed to reconstitute basic housing components. Based on a case-study with industry partners, the fabrication and assembly processes were validated with prototypes made of oriented strand board. Their structural performance was investigated by means of a numerical model and a comparison with glued and nailed assemblies. The results showed that through-tenon connections are a viable alternative to commonly used mechanical fasteners. So far, the structural analysis of such construction systems has been mainly achieved with complex finite element models, not in line with the simplicity of basic housing elements. A convenient calculation model for practice, which can capture the semi-rigid behavior of the connections and predict the effective bending stiffness, was thus introduced and subjected to large-scale bending tests. The proposed model was in good agreement with the experimental results, highlighting the importance of the connection behavior. The in-plane behavior of through-tenon connections for several timber panel materials was characterized through an experimental campaign to determine the load-carrying capacity and slip modulus required for calculation models. Based on the test results, existing guidelines were evaluated to safely apply these connections in structural elements while a finite element model was developed to approximate their performance. This work constitutes a firm basis for the optimization of design guidelines and the creation of an extensive database on digitally produced wood-wood connections. Finally, this thesis provides a convenient design framework for the newly developed standardized timber construction system and a solid foundation for research into digitally produced wood-wood connections.
Online Access
Free
Resource Link
Less detail

Ductile Cross Laminated Timber (CLT) Platform Structures with Passive Damping

https://research.thinkwood.com/en/permalink/catalogue1728
Year of Publication
2016
Topic
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Hashemi, Ashkan
Loo, Wei Yuen
Masoudnia, Reza
Zarnani, Pouyan
Quenneville, Pierre
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Mechanical Properties
Keywords
Low-Rise
Numerical Model
Reverse Cyclic Loading
Quasi-Static
Simulation
Strength
Slip
Platform Buildings
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4730-4737
Summary
Multi-storey platform cross laminated timber (CLT) structures are becoming progressively desirable for engineers and owners. This is because they offer many significant advantages such as speed of fabrication, ease of construction, and excellent strength to weight ratio. With platform construction, stories are fixed together in a way that...
Online Access
Free
Resource Link
Less detail

Dynamic Evaluation of Hybrid Timber-Steel Moment-Frame Structure Using Resilient Slip Friction Connections

https://research.thinkwood.com/en/permalink/catalogue1756
Year of Publication
2016
Topic
Connections
Seismic
Mechanical Properties
Material
Steel-Timber Composite
Application
Frames
Author
Valadbeigi, Armin
Zarnani, Pouyan
Quenneville, Pierre
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Steel-Timber Composite
Application
Frames
Topic
Connections
Seismic
Mechanical Properties
Keywords
Resilient Slip Friction Joint
Damping
Base Shear
Displacement
Acceleration
Self-Centering
Moment-Resisting
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5031-5040
Summary
This study introduces a new resilient slip friction joint for framed hybrid structures. The proposed connection has a self-centring behaviour in addition to damping characteristic. This innovative Resilient Slip Friction (RSF) joint is replaced with the conventional beam to column connections. The RSF joint provides energy dissipation...
Online Access
Free
Resource Link
Less detail

Experimental Investigation on the Long-Term Behaviour of Prefabricated Timber-Concrete Composite Beams with Steel Plate Connections

https://research.thinkwood.com/en/permalink/catalogue2741
Year of Publication
2021
Topic
Connections
Serviceability
Material
Timber-Concrete Composite
Application
Beams
Author
Shi, Benkai
Liu, Weiqing
Yang, Huifeng
Publisher
ScienceDirect
Year of Publication
2021
Format
Journal Article
Material
Timber-Concrete Composite
Application
Beams
Topic
Connections
Serviceability
Keywords
TCC
Prefabrication
Steel Plate
Long-term Behaviour
Interface Slip
Loading
Shear Connections
Deflection
Temperature
Humidity
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
This paper presents the results of long-term experiments performed on three timber-concrete composite (TCC) beams. An innovative fabricated steel plate connection system, which consists of screws and steel plates embedded in concrete slabs, was adopted in the TCC beam specimens. The adopted shear connection can provide dry-type connection for TCC beams. Steel plates were embedded in concrete slabs while the concrete slab was constructed in factories. The timber beam and concrete slab can be assembled together using screws at the construction site. In this experimental programme, the beam specimens were subjected to constant loading for 613 days in indoor uncontrolled environments. The influence of long-term loading levels and the number of shear connections on the long-term performance of TCC beams was investigated and discussed. The mid-span deflection, timber strain, and interface relative slip at the positions of both connections and beam-ends were recorded throughout the long-term tests. It was found the long-term deflection of the TCC beam increased by approximately 60% while the long-term loads were doubled. Under the influence of the variable temperature and humidity, the TCC specimens with 8 shear connections showed slighter fluctuations compared with the TCC beam with 6 shear connections. In the 613-day observation period, the maximum deflection increment recorded was 6.56 mm for the specimen with eight shear connections and 20% loading level. A rheological model consisting of two Kelvin bodies was employed to fit the curves of creep coefficients. The final deflections predicted of all specimens at the end of 50-year service life were 2.1~2.7 times the initial deflections caused by the applied loads. All beam specimens showed relative small increments in mid-span deflection, strain and relative slip over time without any degradations, demonstrating the excellent long-term performance of TCC beams using the innovative steel plate connection system, which is also easily fabricated.
Online Access
Free
Resource Link
Less detail

FE Analysis of Steel-Timber Composite Beams

https://research.thinkwood.com/en/permalink/catalogue2467
Year of Publication
2019
Topic
Mechanical Properties
Material
Steel-Timber Composite
Application
Beams
Author
Chybinski, Marcin
Polus, Lukasz
Szwabinski, Wojciech
Niewiem, Patryk
Publisher
AIP Publishing
Year of Publication
2019
Country of Publication
United States
Format
Journal Article
Material
Steel-Timber Composite
Application
Beams
Topic
Mechanical Properties
Keywords
Finite Element (FE) Model
Slip Modulus
Language
English
Research Status
Complete
Series
AIP Conference Proceedings 2078
Online Access
Free
Resource Link
Less detail

Investigations on the Slip Modulus of a Notched Connection in Timber-Concrete Composite Floors

https://research.thinkwood.com/en/permalink/catalogue1702
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Author
Kudla, Katrin
Mönch, Simon
Kuhlmann, Ulrike
Volk, David
Götz, Tobias
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Floors
Topic
Connections
Mechanical Properties
Keywords
Slip Modulus
Notched Connections
Push-Out Tests
Failure Mode
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4386-4394
Summary
For the design of timber-concrete composite (TCC) elements with notches, the slip modulus Kser represents an important property of the connection. In this paper available research results were gathered and further experimental tests were carried out in order to define the slip modulus of a notched connection. Therefore experimental...
Online Access
Free
Resource Link
Less detail

20 records – page 1 of 2.