The feasibility of manufacturing cross-laminated timber (CLT) from southern yellow pine (United States grown) treated with micronized copper azole type C (MCA-C) preservative was evaluated. Lumber (2x6 visually graded no. 2 boards) was treated to two retention levels (1.0 and 2.4 kg/m3 ), planed to a thickness of 35 mm, and assembled along with an untreated control group using three adhesive systems following product specifications: melamine formaldehyde (MF), resorcinol formaldehyde (RF), and one-component polyurethane (PUR). Block shear and delamination tests were conducted to examine the bonding performance in accordance with ASTM D905 and ASTM D2559 Standards, respectively. One-way analysis of variance and Kruskal-Wallis H test were conducted to evaluate the effects of preservative retention and adhesive type on block shear strength (BSS) and wood failure percentage (WFP). Regardless of adhesive type, the 1.0 kg/m3 retention treatment significantly lowered BSS compared to the untreated control. CLT composed of the laminations treated at 2.4 kg/m3 maintained BSS when PUR and RF were used but not MF. The average WFP of each CLT configuration ranged from 89% to 99%. The untreated CLT specimens did not experience any delamination under accelerated weathering cycles. The delamination rates of the treated specimens assembled using MF and RF increased with the preservative retention level, while PUR provided delamination rates less than 1% to the laminations treated at both levels. These combined data suggest that, under the conditions tested, PUR provided overall better bonding performance than MF and RF for MCA-C treated wood.
Different methods, including bending tests and small and medium size shear tests, were used to assess the skin to stringer glue line shear strength of Radiata Pine Cross-Laminated Timber Derived Stressed-Skin Panels (CLT SSP). Bending test shear strengths were estimated using the mechanically jointed beam theory (gamma method) for CrossLaminated Timber (CLT) panels with modifications in the layers’ effective widths, and then compared with results from the small and medium size shear tests. Small and medium size shear tests proved to be possible methods for assessing bonding strength for factory production control. The small shear tests provided lower strength values and higher scatter results than those gathered from the medium size tests. The mean shear strength results obtained from bending tests were inferior to the values obtained from the small and medium size specimens. The bending tests proved necessary for assessing the mechanical behaviour of CLT SSP.
In this contribution bending and shear tests of cross laminated timber (CLT) plates under concentrated loads are presented. The so loaded structural members can fail either due to punching along a critical perimeter line in the vicinity of the concentrated load or in bending. Two test configurations were developed and investigated by linear elastic models. The obtained test results and observed failures as well as their correlation with the mechanical modeling are shown in this paper. The established numerical model was a 3D solid model with different material behavior for all acting stresses. The material behavior was implemented in a user subroutine for the FE program ABAQUS. By comparison of measured and computed load displacement curves numerical models could be discussed regarding their reliability and conclusions about missing input for an increasing accuracy of the model could be drawn.
Timber has been used for building construction for centuries, until the industrial revolution, when it was often replaced by steel and concrete or confined to low-rise housings. In the last thirty years however, thanks to the development of mass timber products and new global interest in sustainability, timber has begun to make a resurgence in the building industry. As building codes and public perception continues to change, the demand for taller and higher-performance timber buildings will only grow. Thus, a need exists for new construction technology appropriate for taller mass timber construction, as well as for fabrication and deconstruction practices that respect wood’s inherent sustainable nature. With this in mind, this research program aims to develop a new hybrid shear connection for mass timber buildings that allows for easy construction, deconstruction, and reuse of the structural elements.
This report includes results of Phase 1, which focused on connections consisting of partially threaded 20M and 24M steel rods bonded into pockets formed in CLT and surrounded by thick crowns of high-strength three-component epoxy-based grout. A total of 168 specimens were designed and fabricated, and push-out shear tests carried out with a displacement-controlled monotonic loading protocol. Strength and stiffness values were assessed and effective failure modes in specimens identified. These latter, along with the recorded load-deformation curves, indicate that it is possible to develop mechanics-based design models and design formulas akin to those already used for typical dowel-type fastener timber connections. Additionally, the specimens were easily fabricated in the lab and quickly fastened to the test jig by means of nuts and washers, suggested such connections have a strong potential for prefabrication, disassembly, and reuse.
Laminated veneer lumber (LVL) is an engineered wood product manufactured from specially selected veneers with varying strength and stiffness properties. LVL products are often specified where a certain span, strength and/or stiffness is required. As such, LVL products are generally designed for and used in applications where they will be highly stressed under design loads. For this reason, field modifications, such as notching, tapering, or drilling should be avoided and never done without a thorough understanding of the effects on the structural capacities of the LVL. Nonetheless, it is not uncommon for the designer and contractor to find a need to cut holes through LVL members for plumbing pipes, electrical conduits, or air ducts. Therefore, it is usually necessary to determine the residual structural capacities of the LVL member when holes are cut. The objective of this paper is to examine the effect of round holes on the structural capacities of LVL, including bending moment, shear, and bending stiffness. Full-scale LVL bending and shear tests were conducted to provide data for characterization of the hole effect. Based on the test data, design equations that account for single and multiple holes up to 2/3 of the LVL member depth and a clear distance of 15% or more of the LVL depth from the edge of the hole to either tension and compression edge of the LVL member have been developed. To ensure safe implementation of such design recommendations in practice, prescriptive limitations, such as the minimum clear distance between the face of a support and the edge of a hole, and the minimum clear distance between adjacent holes, are also prescribed.
The performance of timber-concrete composite bridge constructions crucially depends on the design of the joint between concrete deck and timber main girders. In research studies at the Bauhaus-University Weimar, innovative joining techniques based on grouting with highly-filled, tolerance-compensating polymer glue mortars have been developed to improve the shear capacity of this joint significantly. By applying a thin layer of polymer mortar on the top of the wooden main girder a continuous, slip-free connection to the timber can be realized. This layer can be utilized for the embedding of steel plates with welded-on shear studs (stud connectors), so that the joint to the concrete side is ensured by a standardised connection. The steel plates are rigidly anchored in the polymer mortar by adhesive bond and form closure. As an alternative, a slip-free grout-glued connection between concrete and timber can be realized by the glue mortar itself, so that also a continuous connection to the concrete is accessible, whereby manufacturing tolerances can easily be compensated due to the high degree of mineral filling of the polymer mortar. The paper focuses on experimental results of shear and bending tests for the new composite joint configurations.
This paper presents an experimental study on rolling shear (RS) strength properties of non-edge-glued cross-laminated timber (CLT) made out of New Zealand Radiata pine (Pinus radiata) structural timber. CLT specimens with 35 and 20 mm thick laminations were studied to evaluate the influence of lamination thickness on the RS strength of CLT. Short-span three-point bending tests were used to introduce high RS stresses in cross layers of CLT specimens and facilitate the RS failure mechanism. Modified planar shear tests from the conventional two-plate planar shear tests were also used to evaluate the RS strength properties. It was found that two test methods yielded comparable RS strength properties and the lamination thickness significantly affected RS strength of the CLT specimens. The test results also indicated that the recommended characteristic RS strength values of CLT products in Europe and Canada might be over conservative. Also, it might be more efficient to specify different RS strength values for CLT with different lamination thickness given the minimum width-to-depth ratio of laminations is satisfied.
To better use the second-growth wood resources in value-added applications, this work addressed the manufacturing aspects of cross-laminated timber (CLT) products from western hemlock (Tsuga heterophylla (Raf.) Sarg) and amabilis fir (Abies amabilis (Dougl.) Forbes) (or hem-fir) harvested from coastal British Columbia, Canada. Small CLT billets (nominal 610 mm×610 mm) were made to examine CLT bond quality and durability through block shear and delamination tests. Two types of adhesives, single-component polyurethane (PUR) and emulsion polymer isocyanate (EPI) and two critical applied pressure parameters (0.28 and 0.83 MPa) were adopted to manufacture hem-fir CLT. It was found that the adhesive type and applied pressure significantly affected wood failure percentage (WFP) and delamination of hem-fir CLT. When PUR adhesive was used, CLT made at 0.83 MPa pressure yielded significantly higher WFP and lower delamination than that made at 0.28 MPa pressure. The results demonstrated that despite the fact that hem-fir lumber is not particularly specified in the current North American CLT standard, it could be used for manufacturing CLT with the required panel bond quality.