Skip header and navigation

17 records – page 1 of 2.

Comparison of Theoretical and Laboratory Out-of-Plane Shear Stiffness Values of Cross Laminated Timber Panels

https://research.thinkwood.com/en/permalink/catalogue2177
Year of Publication
2018
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)

Development of Evaluation Methodology for Rolling Shear Properties in Cross Laminated Timber (CLT)

https://research.thinkwood.com/en/permalink/catalogue137
Year of Publication
2013
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Beams
Author
Zhou, Qinyi
Organization
University of New Brunswick
Year of Publication
2013
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Span-to-Depth
Rolling Shear Modulus
Two-plate shear test
Load Carrying Capacity
Research Status
Complete
Summary
The rolling shear modulus is very low, leading to rolling shear failure in the cross layer of cross-laminated timber (CLT). The overall objective of this thesis work was to develop an appropriate methodology for measuring the rolling shear properties of CL T. This research consists of three article format chapters, which were aimed at: 1) obtaining a better understanding of advantages and disadvantages of using the bending test and twoplate shear test for determining the rolling shear properties of 3-layer CLT, 2) investigating the influence of growth ring orientation and laminates thickness of cross layer on the rolling shear properties, and 3) verifying the feasibility of two-plate shear test method for measuring the rolling shear properties of 3-layer CL T beam. It is recommended that the two-plate shear test be used as a testing method for measuring the rolling shear modulus of a cross layer, which can be used to calculate the deflection of a 3-layer CLT beam using the shear analogy method at a given span-to-depth ratio ranging from 6 to 50. An adjustment factor (a) was proposed to predict the deflection under the centre-point bending test at various span-to-depth ratios. The two-plate shear test method can also be used to measure the rolling shear strength, and can provide a reasonable estimate of the load-carrying capacity of 3-layer CLT beam at a relatively large span-to-depth ratio, but a conservative estimate at a small span-to-depth ratio. In summary, it shall be feasible to adopt the two-plate shear test for determining the rolling shear modulus and strength of cross layer in CLT.
Online Access
Free
Resource Link
Less detail

Diaphragm shear and diagonal compression testing of cross-laminated timber

https://research.thinkwood.com/en/permalink/catalogue2858
Year of Publication
2021
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Author
Sharifi, Jonas
Sharifi, Zahra
Berg, Sven
Ekevad, Mats
Organization
Luleå University of Technology
Publisher
Springer
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Topic
Mechanical Properties
Keywords
Diagonal Compression Test
Diaphragm Shear Test
Shear Modulus
Research Status
Complete
Series
SN Applied Sciences
Summary
To learn the characteristics of a cross-laminated timber (CLT) panel, it is crucial to perform experimental tests. This study presents two experimental test methods to measure the in-plane shear modulus of CLT panels. This characteristic can be measured by multiple methods such as the picture frame test, the diagonal compression test, and the diaphragm shear test. In this study, the same CLT panels are tested and evaluated in the diaphragm shear test and the diagonal compression test to see if more reliable results can be achieved from the diaphragm shear test. This evaluation is done by experimental tests and finite element simulations. The theoretical pure shear simulation is used as a reference case. Finite element simulations are made for both edge glued and non-edge glued CLT panels. Nine CLT panels are tested in the diaphragm shear test and the diagonal compression test. During ideal conditions (uniform material properties and contact conditions), all three simulated methods result in an almost equal shear modulus. During the experimental testing, the diagonal compression test gives more coherent results with the expected shear modulus based on finite element simulations. Based on the diaphragm shear test results, the CLT panels behave like edge glued, but this situation is dismissed. However, during ideal conditions, the diaphragm shear test is seen as a more reliable method due to the higher proportion of shear in the measured area.
Online Access
Free
Resource Link
Less detail

Effect of Growth Ring Orientation on the Rolling Shear Properties of Wooden Cross Layer Under Two-Plate Shear Test

https://research.thinkwood.com/en/permalink/catalogue635
Year of Publication
2014
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Zhou, Qinyi
Gong, Meng
Chui, Ying Hei
Mohammad, Mohammad
Year of Publication
2014
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Growth Ring Orientation
Rolling Shear Modulus
Rolling Shear Strength
Spruce
Two-plate shear test
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The design and application of cross laminated timber (CLT) is s trongly influenced by rolling shear properties of cross layers. Hence, predicting the mechanical behaviour of CLT requires accurate information about its rolling shear properties. In this study, black spruce wood laminates with three different growth ring orientations (flat sawn, in-between, quarter sawn) were edge glued to produce wooden cross layer (WCL). Two-plate shear tests were carried out on WCL to investigate the influence of growth ring orientation on the rolling shear properties. The experimental results showed that the growth ring orientation had a significant effect on rolling shear modulus of WCL, however, almost no effect on the rolling shear strength. The WCL of in-between end grain had the maximum rolling shear modulus of 89MPa and rolling sh ear strength of 2.13 MPa.
Online Access
Free
Resource Link
Less detail

Elastic Constants of Cross Laminated Timber Panels of Industrial Size: Non-Destructive Measurement and Verification

https://research.thinkwood.com/en/permalink/catalogue1538
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Zhou, Jianhui
Chui, Ying Hei
Schickhofer, Gerhard
Frappier, Julie
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Elastic Constants
Modulus of Elasticity
Shear Modulus
Non-Destructive Tests
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1061-1068
Summary
Cross laminated timber (CLT) is leading the evolution of wood construction throughout the world. As atwo-dimensional plate-like construction product, the in-plane elastic constants of CLT panels are the fundamental parameters for serviceability design. The elastic constants including moduli of elasticity (MOE) in major and minor strength direction ( and y) and in-plane shear modulus ( xy) of full-size CLT panels with different dimensions and layups from three CLT producers were measured by a non-destructive test (NDT) method developed by the first author. In total, 51 CLT panels were tested with most of the testing conducted at CLT mills. The measured values were used to examine the existing effective stiffness prediction models of CLT. Results show that k-method can be used for predicting and y values of industrial size CLT with a large length/ width to thickness ratio. xy cannot be well predicted by k-method and is greatly affected by edge bonding and gaps. Gamma method and shear analogy method can include the effect of transverse shear to different extents into account in predicting apparent or y. Shear analogy method appears to predict closer apparent to the measured values than gamma method for CLT with small length to thickness ratio. However, the effect of transverse shear on apparent y is not as much as predicted by shear analogy method for CLT panels with width from 1 to 3 meters. NDT by modal testing was proven to be an efficient mechanical property evaluation method for full-size CLT panels.
Online Access
Free
Resource Link
Less detail

Experimental Investigation of Cross-Laminated Timber Shear Wall Under Shear Force by Using Digital Image Correlation Method

https://research.thinkwood.com/en/permalink/catalogue1369
Year of Publication
2018
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Kuo, Tzu-Yu
Wang, Wei-Chung
Lin, Chih-Hsien
Yang, Te-Hsin
Publisher
Springer
Year of Publication
2018
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Mechanical Properties
Keywords
ASTM
Real Scale
Taiwan
Shear Modulus
Cyclic Tests
Conference
International Conference on Theoretical, Applied and Experimental Mechanics
Research Status
Complete
Summary
At the beginning of the 20th century, a new wood manufacturing technology, i.e. cross-laminated timber (CLT), was started. In Taiwan, the manufacturing technology of CLT has just started recently. For the sake of safety, the information of stiffness and strength of the shear wall of the CLT are essential for structural designs. In this paper, by following the method B (ISO 16670 Protocol) of ASTM standard E2126-11, shear test of a real-scale CLT shear wall was performed. The measured shear modulus and cyclic test results of the CLT shear wall were reported in this paper. By using the three-dimensional digital image correlation technique, full-field deformation information of the CLT shear wall were obtained.
Online Access
Payment Required
Resource Link
Less detail

Feasibility of Predictive Assessment of Bending Performance of CLT Plates of Canadian Hemlock

https://research.thinkwood.com/en/permalink/catalogue2107
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls

Hybrid Beech and Spruce Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1547
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Aicher, Simon
Hirsch, Maren
Christian, Zachary
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Beech
Rolling Shear Modulus
Rolling Shear Strength
Shear Tests
Compression Shear
Bending Tests
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1147-1155
Summary
The presented work examines the rolling shear properties of beech wood for the novel application as cross-layers in hybrid cross-laminated timber. Rolling shear modulus and strength of beech were determined by three different approaches: i) two-plate shear tests on single beech board slabs, and ii) compression shear and iii) bending tests on hybrid CLT specimens based on the test methods defined in EN 16351. The CLT specimens were cut from two industrially manufactured hybrid three-layered CLT-plates with a beech cross-layer and spruce outer layers. The rolling shear modulus results obtained from the single board tests and the bending tests agreed well and were within the range of 350 - 370 N/mm². The characteristic rolling shear strength obtained from the bending tests was determined as 2.6 N/mm², where the failure was often governed by longitudinal shearing of the spruce laminations. Hybrid CLT-plates demonstrate a highly improved strength and deflection behaviour versus homogenous spruce CLT-plates and result in not only a mechanically superior product but also allow for a greatly simplified design approach.
Online Access
Free
Resource Link
Less detail

Impact of Board Width on In-plane Shear Stiffness of Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2272
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Turesson, Jonas
Berg, Sven
Ekevad, Mats
Publisher
Elsevier
Year of Publication
2019
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
In-Plane Shear Modulus
In-Plane Shear Stiffness
Finite Element Method
Board Width
Layer Thickness
Board Gap
Research Status
Complete
Series
Engineering Structures
Summary
Board width-to-thickness ratios in non-edge-glued cross laminated timber (CLT) panels influence the in-plane shear stiffness of the panel. The objective is to show the impact of board width-to-thickness ratios for 3- and 5-layer CLT panels. Shear stiffnesses were calculated using finite element analysis and are shown as reduction factors relative to the shear stiffnesses of edge-glued CLT panels. Board width-to-thickness ratios were independently varied for outer and inner layers. Results show that the reduction factor lies in the interval of 0.6 to 0.9 for most width-to-thickness ratios. Results show also that using boards with low width-to-thickness ratios give low reduction factors. The calculated result differed by 2.9% compared to existing experimental data.
Online Access
Free
Resource Link
Less detail

Influence of laminate direction and glue area on in-plane shear modulus of cross-laminated timber

https://research.thinkwood.com/en/permalink/catalogue2857
Year of Publication
2020
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Author
Turesson, Jonas
Sharifi, Zahra
Berg, Sven
Ekevad, Mats
Organization
Luleå University of Technology
Publisher
Springer
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Topic
Mechanical Properties
Keywords
Diagonal Compression Test
Laminate Direction
Shear Modulus
Research Status
Complete
Series
SN Applied Sciences
Summary
The use of cross-laminated timber (CLT) in constructing tall buildings has increased. So, it has become crucial to get a higher in-plane stiffness in CLT panels. One way of increasing the shear modulus, G, for CLT panels can be by alternating the layers to other angles than the traditional 0° and 90°. The diagonal compression test can be used to measure the shear stiffness from which G is calculated. A general equation for calculating the G value for the CLT panels tested in the diagonal compression test was established and verified by tests, finite element simulations and external data. The equation was created from finite element simulations of full-scale CLT walls. By this equation, the influence on the G value was a factor of 2.8 and 2.0 by alternating the main laminate direction of the mid layer from the traditional 90° to 45° and 30°, respectively. From practical tests, these increases were measured to 2.9 and 1.8, respectively. Another influence on the G value was studied by the reduction of the glue area between the layers. It was shown that the pattern of the contact area was more important than the size of the contact area.
Online Access
Free
Resource Link
Less detail

17 records – page 1 of 2.