Skip header and navigation

9 records – page 1 of 1.

Analysis of the Timber-Concrete Composite Systems with Ductile Connection

https://research.thinkwood.com/en/permalink/catalogue113
Year of Publication
2013
Topic
Mechanical Properties
Material
Timber-Concrete Composite
Author
Zhang, Chao
Organization
University of Toronto
Year of Publication
2013
Format
Thesis
Material
Timber-Concrete Composite
Topic
Mechanical Properties
Keywords
Bending
Ductility
Model
Load Deflection
Tension
Shear Connection
Research Status
Complete
Summary
In timber-concrete composite systems, timber and concrete are inherently brittle materials that behave linearly elastic in both tension and bending. However, the shear connection between the members can exhibit significant ductility. It is therefore possible to develop timber-concrete composite systems with ductile connection that behave in a ductile fashion. This study illustrates the use of an elastic-perfectly plastic analytical approach to this problem. In addition, the study proposes an incremental method for predicting the nonlinear load-deflection response of the composite system. The accuracy of the analytical model is confirmed with a computer model, and numerical solutions of the analytical model are compared to experimental results from the bending tests conducted by previous researchers. Reasonable agreement is found from the comparisons, which validates the capacity of the analytical model in predicting the structural behaviour of the timber-concrete composite systems in both elastic and post-elastic stages.
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber Shear Connections with Double-Angled Self-Tapping Screw Assemblies

https://research.thinkwood.com/en/permalink/catalogue544
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Hossain, Afrin
Danzig, Ilana
Tannert, Thomas
Publisher
American Society of Civil Engineers
Year of Publication
2016
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Self-Tapping Screws
Shear Resistance Performance
Shear Connection
Quasi-Static
Reverse Cyclic Loading
Lateral Load
Research Status
Complete
Series
Journal of Structural Engineering
Summary
The research presented in this paper examines the shear resistance performance of self-tapping screws (STS) in three-ply cross-laminated timber (CLT) panels. Specifically, the feasibility of using innovative STS assemblies with double inclination of fasteners was investigated for the shear connection of CLT panels. The specimens (1.5×1.5 m) were subjected to quasi-static and reversed-cyclic loading. The tests were set up to approximate pure shear loading, with three-panel CLT assemblies connected with STS. The resulting load-displacement and hysteretic curves were used to determine an equivalent energy elastic-plastic curve to estimate assembly capacity, yield load, yield displacement, ductility ratio, stiffness, and damping. Excellent structural performance in terms of capacity and stiffness was obtained while still providing the required ductility for the system to be used in seismic applications. The average static and cyclic yield loads were 6.0 kN/screw and 5.9 kN/screw, respectively. Average static and cyclic and ductility ratios were 7.7 and 4.1, respectively, allowing the connection to be classified as highly ductile under quasi-static loading and moderately ductile under reversed cyclic loading. The data obtained allow engineers to specify an innovative connection assembly with double inclination of fasteners for lateral load–resisting systems of CLT structures.
Online Access
Free
Resource Link
Less detail

Design Guide for Timber-Concrete Composite Floors in Canada

https://research.thinkwood.com/en/permalink/catalogue2460
Year of Publication
2020
Topic
Design and Systems
Connections
Acoustics and Vibration
Fire
Material
Timber-Concrete Composite
Application
Floors
Organization
FPInnovations
Year of Publication
2020
Format
Book/Guide
Material
Timber-Concrete Composite
Application
Floors
Topic
Design and Systems
Connections
Acoustics and Vibration
Fire
Keywords
Shear Connection
Ultimate Limit States
Vibration
Fire Resistance
Research Status
Complete
Summary
As part of its research work on wood buildings, FPInnovations has recently launched a Design Guide for Timber-Concrete Composite Floors in Canada. This technique, far from being new, could prove to be a cost-competitive solution for floors with longer-span since the mechanical properties of the two materials act in complementarity. Timber-concrete systems consist of two distinct layers, a timber layer and a concrete layer (on top), joined together by shear connectors. The properties of both materials are then better exploited since tension forces from bending are mainly resisted by the timber, while compression forces from bending are resisted by the concrete. This guide, which contains numerous illustrations and formulas to help users better plan their projects, addresses many aspects of the design of timber-concrete composite floors, for example shear connection systems, ultimate limit state design, vibration and fire resistance of floors, and much more.
Online Access
Free
Resource Link
Less detail

Evaluation of Bending Tests on Composite Glulam-CLT Beams Connected with Double-Sided Punched Metal Plates and Inclined Screws

https://research.thinkwood.com/en/permalink/catalogue436
Year of Publication
2015
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Author
Jacquier, Nicolas
Girhammar, Ulf
Publisher
ScienceDirect
Year of Publication
2015
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Topic
Connections
Mechanical Properties
Keywords
Multi-Storey
Four Point Bending Test
Shear connection
Double-sided Punched Metal Plate
Separation Forces
Research Status
Complete
Series
Construction and Building Materials
Summary
This report presents bending tests performed on composite beams made from glulam beams and cross laminated timber (CLT) panels. The composite beam, with a T-cross section, represents a section of a floor element in a multi-storey CLT construction system. The shear connections used were made either of doublesided punched metal plate fasteners, either of inclined screws, or of a combination of both fastener types. The screws are used to secure the shear connection with double-sided nail plates with respect to possible separation forces between the glulam and the CLT. An additional test with a screw glued connection was made for comparison as the upper bound case in terms of composite action. The results show the beams with double-sided nail plates (with or without screws) achieved a very high level of composite action and an overall satisfactory behaviour. Almost full composite action was achieved for the screw-glued composite beam. A detailed design example of the beam element according to the Eurocode 5 and Finnish National Annex is presented.
Online Access
Free
Resource Link
Less detail

Experimental Study of Aluminium-Timber Composite Bolted Connections Strengthened with Toothed Plates

https://research.thinkwood.com/en/permalink/catalogue3162
Year of Publication
2022
Topic
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Chybinski, Marcin
Polus, Lukasz
Organization
Poznan University of Technology
Editor
Garbowski, Tomasz
Marek, Aleksander
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Topic
Mechanical Properties
Keywords
Aluminium-Timber Composite Structures
Aluminium Alloy
Engineering Wood Products
Toothed Plate
Bolted Connection
Shear Connection
Push-out Test
Research Status
Complete
Series
Materials
Summary
This paper presents the first experimental study of the load-slip behaviour of aluminium-timber composite bolted connections reinforced with toothed plates. The effectiveness of the strengthening was evaluated in laboratory push-out tests. The push-out test samples consisted of laminated veneer lumber panels, aluminium alloy I-beams, and bolts (grade 8.8 10 mm × 125 mm and 12 mm × 135 mm bolts, grade 5.8 10 mm × 125 mm and 12 mm × 135 mm bolts). A group of 16 specimens had toothed plates as additional reinforcement, while 16 specimens had no reinforcement. The impact of the bolt diameter (10 and 12 mm) and bolt grade (5.8 and 8.8) on the behaviour of the connections was also analysed. The values of the ultimate load and the slip modulus for the bolted connections with grade 8.8 10 mm and 12 mm bolts and with grade 5.8 12 mm bolts reinforced by toothed-plate connectors were comparable to the values for the non-reinforced connections. This was because, in the case of grade 8.8 10 mm × 125 mm and 12 mm × 135 mm bolts and grade 5.8 12 mm × 135 mm bolts, the laminated veneer lumber (LVL) slabs split both in the reinforced and non-reinforced connections. The toothed-plate connectors reduced timber destruction in the bearing zones in the LVL slabs. However, they did not protect the LVL slabs against splitting. Therefore, the impact of the toothed plate connectors on the stiffness and strength of the bolted connections with grade 8.8 10 mm and 12 mm bolts and with grade 5.8 12 mm bolts analysed in this paper was found to be negligible. In the case of grade 5.8 10 mm bolts, the LVL slabs did not split. The mean slip modulus k0.6 of the connections with grade 5.8 10 mm bolts reinforced with toothed plate connectors was 2.9 times higher than that of the non-reinforced connections. However, the strength of the connections with grade 5.8 10 mm bolts was 1.2 times lower after reinforcing. This was because the shanks of the bolts were sheared faster in the reinforced connections than in the non-reinforced connections as a result of the bolt shanks being under the bearing pressure of the aluminium flange, the LVL slab, and the toothed-plate flange. This situation did not occur for the remaining connections because they had a higher strength (grade 8.8 bolts) or a larger diameter (12 mm), and their bolts were less prone to cutting off. The investigated load–slip curves of the reinforced bolted connections can be used for designing and numerical modelling of aluminium-timber composite beams with this type of connection.
Online Access
Free
Resource Link
Less detail

Finite Element Modeling on Shear Performance of Grouted Stud Connectors for Steel–Timber Composite Beams

https://research.thinkwood.com/en/permalink/catalogue2944
Year of Publication
2022
Topic
Mechanical Properties
Material
Steel-Timber Composite
Application
Beams
Author
Zhang, Henan
Ling, Zhibin
Organization
Suzhou University of Science and Technology
Editor
Lopes, Sérgio
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
Steel-Timber Composite
Application
Beams
Topic
Mechanical Properties
Keywords
Shear Connection
Finite Element Modeling
Grouted Stud Connections
Research Status
Complete
Series
Materials
Summary
Steel–timber composite (STC) systems are considered as an environmentally friendly alternative to steel–concrete composite (SCC) structures due to its advantages including high strength-to-weight ratio, lower carbon footprint, and fully dry construction. Bolts and screws are the most commonly used connectors in STC system; however, they probably make great demands on the accuracy of construction because of the predrilling in both the timber slabs and steel girder fangles. To address this issue, the STC connections with grouted stud connectors (GSC) were proposed in this paper. In addition, stud connectors can also provide outstanding stiffness and load-bearing capacity. The mechanical characteristic of the GSC connections was exploratorily investigated by finite element (FE) modeling. The designed parameters for the FE models include stud diameter, stud strength, angle of outer layer of cross-laminated timber (CLT) panel, tapered groove configurations, and thickness of CLT panel. The numerical results indicated that the shear capacity and stiffness of the GSC connections were mainly influenced by stud diameter, stud strength, angle of outer layer of CLT panel, and the angle of the tapered grooves. Moreover, the FE simulated shear capacity of the GSC connections were compared with the results predicted by the available calculation formulas in design codes and literatures. Finally, the group effect of the GSC connections with multiple rows of studs was discussed based on the numerical results and parametric analyses. An effective row number of studs was proposed to characterize the group effect of the GSC connections.
Online Access
Free
Resource Link
Less detail

Mechanical Behaviour of Aluminium-Timber Composite Connections with Screws and Toothed Plates

https://research.thinkwood.com/en/permalink/catalogue3061
Year of Publication
2022
Topic
Connections
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Chybinski, Marcin
Polus, Lukasz
Organization
Poznan University of Technology
Editor
Sorrentino, Andrea
Chen, Daolun
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Topic
Connections
Mechanical Properties
Keywords
Aluminium-Timber Structures
Toothed Plate
Screwed Connection
Shear Connection
Push-out Test
Research Status
Complete
Series
Materials
Summary
This paper presents an investigation of the load-slip behaviour of aluminium-timber composite connections. Toothed plates with bolts are often used for connecting timber structural members with steel structural members. In this paper, toothed plates (C2-50/M10G, C2-50/M12G or C11-50/M12) have been used as reinforcement in aluminium-timber screwed connections for the first time. The push-out test specimens consisted of laminated veneer lumber slabs, aluminium alloy beams, and hexagon head wood screws (10 mm × 80 mm and 12 mm × 80 mm). Of the specimens, 12 additionally had toothed plates as reinforcement, while 8 had no reinforcement. The load carrying-capacity, the mode of failure and the load-slip response of the strengthened and non-strengthened screwed connections were investigated. The use of toothed plate connectors was found to be effective in increasing the strength of aluminium-timber composite connections and ineffective in improving their stiffness. The examined stiffness and strength of the connections can be used in the design and numerical modelling of aluminium-timber composite beams with reinforced screwed connections.
Online Access
Free
Resource Link
Less detail

Modelling the Fire Performance of Hybrid Steel-Timber Connections

https://research.thinkwood.com/en/permalink/catalogue285
Year of Publication
2014
Topic
Connections
Fire
Material
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Author
Akotuah Ohene, Aaron
Organization
Carleton University
Year of Publication
2014
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Topic
Connections
Fire
Keywords
Shear connection
Timber-Steel Hybrid
Fire Resistance
Finite Element Model
Research Status
Complete
Summary
In a building structure, wood can be used in conjunction with steel or concrete material to form what is known as a hybrid building system. A hybrid system combines the efficient properties of the different materials to achieve design requirements such as structural or fire safety. In this research, a typical steel-timber hybrid system is considered. This steel-timber hybrid system consists of a glulam wooden beam connected to a steel column. The connection of the beam to the column is composed of three different types of shear tab connections: concealed, exposed and seated connections. These connections transfer vertical loads between the beams and columns in a hybrid structure. The fire resistance of these connections is evaluated using a finite element model and compared with the full-scale experimental fire resistance tests which had been conducted earlier in a separate project. The major parameters studied included load ratio, heat transfer, charring properties of wood, failure mode of the wood, and their influence on the time to failure of the connections. The finite element model results were in good agreement with the observations made from the experimental tests. The variation between the test and the model results was within a ±11% envelope. In conclusion, the seated connection had a better fire resistance as compared to the concealed and exposed connections.
Online Access
Free
Resource Link
Less detail

Structural Tests of Concrete Composite-Cross-Laminated Timber Floors

https://research.thinkwood.com/en/permalink/catalogue2830
Year of Publication
2017
Topic
Connections
Mechanical Properties
Serviceability
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Decking
Author
Higgins, Christopher
Barbosa, R. Andre
Blank, Curtis
Organization
Oregon State University
Publisher
Oregon State University
Year of Publication
2017
Format
Report
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Decking
Topic
Connections
Mechanical Properties
Serviceability
Keywords
Bending Behaviour
Shear Connection
Long-term Behaviour
TCC
Orthrotropic Plates
Research Status
Complete
Summary
Experimental tests of a composite concrete-cross-laminated timber (CLT) floor system were conducted. The floor system was constructed with 5-ply CLT panels (6.75 in. thick) made composite with a 2.25 in. thick reinforced concrete topping slab. Four series of tests were performed using different specimen configurations and laboratory testing methods. Tests included: (1) Comparative one-way bending tests (CB) to evaluate the performance of alternative shear connectors used to join the concrete slab to the CLT panel; (2) Orthotropic stiffness and strength tests (OS) to evaluate the elastic orthotropic stiffness of the deck system and provide strength results for weak-axis bending and negative moment strength; (3) Full-scale system performance tests (FS) of a continuous floor span to establish strength at realistic span lengths and the influence of continuity; and (4) Long-term deformation tests (LT) to investigate creep deflections of the composite concrete-CLT floor system considering positive and negative bending influences. Results include overall strength, elastic stiffness values, deformation capacity, slip deformations along the concrete-CLT interface, predicted neutral axis locations in the composite concrete-CLT systems, and connection deformations.
Online Access
Free
Resource Link
Less detail

9 records – page 1 of 1.