Skip header and navigation

Refine Results By

250 records – page 1 of 25.

Accuracy Evaluation of Gamma-Method for Deflection Prediction of Partial Composite Beams

https://research.thinkwood.com/en/permalink/catalogue1911
Year of Publication
2018
Topic
Mechanical Properties
Design and Systems
Material
Timber-Concrete Composite
Application
Wood Building Systems
Beams

Adhesive-Bonded Timber-Concrete Composites - Experimental Investigation of Thermal-Hygric Effects

https://research.thinkwood.com/en/permalink/catalogue1519
Year of Publication
2016
Topic
Serviceability
Mechanical Properties
Material
Timber-Concrete Composite
Author
Seim, Werner
Eisenhut, Lars
Kühlborn, Sonja
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Topic
Serviceability
Mechanical Properties
Keywords
Climate
Long-term
Shear Strength
Deformation
Temperature
Moisture Content
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 597-605
Summary
The advantages of the two different building construction materials, timber and concrete, can be used effectively in adhesive-bonded timber-concrete composite constructions. The long-term behavior was investigated experimentally on small-scale shear and bond specimens under artificial, alternating climatic conditions and on fullscale specimens under natural climatic conditions for an application in construction practice. The development of the shear strength and the deformation behavior under permanent loads were studied, focusing on the different material behavior of wood and concrete regarding changes in temperature and moisture. The general applicability of adhesivebonded timber-concrete composites in construction practice was proved in the investigations.
Online Access
Free
Resource Link
Less detail

Advanced Modelling of Cross Laminated Timber (CLT) Panels in Bending

https://research.thinkwood.com/en/permalink/catalogue1796
Year of Publication
2015
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Franzoni, Lorenzo
Lebée, Arthur
Lyon, Florent
Forêt, Gilles
Publisher
HAL archives-ouvertes.fr
Year of Publication
2015
Country of Publication
Germany
Format
Presentation
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Mechanical Properties
Keywords
Bending
Model
Panels
Shear
Stiffness
Failure Behavior
Shear Force
Reference Test
Language
English
Conference
Euromech Colloquim 556 Theoretical Numerical and Experimental Analyses of Wood Mechanics
Research Status
Complete
Notes
May 2015, Dresde, Germany
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Analytical Models for Balloon-Type CLT Shear Walls

https://research.thinkwood.com/en/permalink/catalogue1877
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Chen, Zhiyong
Cuerrier-Auclair, Samuel
Popovski, Marjan
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Keywords
Lateral Loads
Shear
Mass Timber
Language
English
Research Status
Complete
Summary
Lack of research and design information for the seismic performance of balloon-type CLT shear walls prevents CLT from being used as an acceptable solution to resist seismic loads in balloon-type mass-timber buildings. To quantify the performance of balloon-type CLT structures subjected to lateral loads and create the research background for future code implementation of balloon-type CLT systems in CSA O86 and NBCC, FPInnovations initiated a project to determine the behaviour of balloon-type CLT construction. A series of tests on balloon-type CLT walls and connections used in these walls were conducted. Analytical models were developed based on engineering principles and basic mechanics to predict the deflection and resistance of the balloon-type CLT shear walls. This report covers the work related to development of the analytical models and the tests on balloon-type CLT walls that the models were verified against.
Online Access
Free
Resource Link
Less detail

Advancing Knowledge of Mid-ply Shear Walls: Mid-Ply Shear Wall Fire Resistance Testing

https://research.thinkwood.com/en/permalink/catalogue2808
Year of Publication
2021
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Author
Ranger, Lindsay
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Topic
Fire
Keywords
Shear Walls
Fire Resistance Rating
Mid-Rise
Midply Wall
Language
English
Research Status
Complete
Summary
The objective of this research is to address a knowledge gap related to fire performance of midply shear walls. Testing has already been done to establish the structural performance of these assemblies. To ensure their safe implementation and their broad acceptance, this project will establish fire resistance ratings for midply shear walls. Fire tests will provide information for the development of design considerations for midply shear walls and confirm that they can achieve at least 1-hour fire-resistance ratings that are required for use in mid-rise buildings. This research will support greater adoption of mid-rise residential and non-residential wood-frame construction and improve competition with similar buildings of noncombustible construction. This work will also support the development of the APA system report for midply walls, which will be a design guideline for using midply walls in North America.
Online Access
Free
Resource Link
Less detail

An Accurate One-Dimensional Theory for the Dynamics of Laminated Composite Curved Beams

https://research.thinkwood.com/en/permalink/catalogue889
Year of Publication
2014
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Carpentieri, Gerardo
Tornabene, Francesco
Ascione, Luigi
Fraternalia, Fernando
Publisher
ScienceDirect
Year of Publication
2014
Country of Publication
Netherlands
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Dynamic Behavior
Mechanical Theory
Finite Element Model
Bending
Shear
Deformation
Language
English
Research Status
Complete
Series
Journal of Sound and Vibration
Summary
We model the dynamic behavior of laminated curved beams on the assumption that the different layers of such structures are perfectly bonded at the interface and can show different flexural rotations from one another. We formulate a mechanical theory and a finite element model accounting for bending, shear, warping and extensional deformation modes, as well as radial, tangential and rotary inertias. The main novelty of the proposed theory consists of a generalization of layer-wise displacement approaches available in literature to the dynamics of beams with finite curvature. The work includes some numerical results related to the free vibration of laminated arches and showing different support conditions and aspect ratios to establish comparisons with different theories in the literature. We observe that an accurate mechanical modeling of curved laminated beams is crucial for correct estimation of the eigenfrequencies and eigenmodes of such structures within a 1D framework.
Online Access
Free
Resource Link
Less detail

Analysis of Mechanical Properties of Cross-Laminated Timber (CLT) with Plywood using Korean Larch

https://research.thinkwood.com/en/permalink/catalogue1806
Year of Publication
2018
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)

Analysis of Shear Transfer and Gap Opening in Timber–Concrete Composite Members with Notched Connections

https://research.thinkwood.com/en/permalink/catalogue1399
Year of Publication
2017
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
Author
Boccadoro, Lorenzo
Steiger, René
Zweidler, Simon
Frangi, Andrea
Publisher
Springer Netherlands
Year of Publication
2017
Country of Publication
Netherlands
Format
Journal Article
Material
Timber-Concrete Composite
Topic
Connections
Mechanical Properties
Keywords
Notched Connections
Analytical Model
Shear Stress
Failure
Language
English
Research Status
Complete
Series
Materials and Structures
ISSN
1871-6873
Summary
In timber–concrete composite members with notched connections, the notches act as the shear connections between the timber and the concrete part, and have to carry the shear flow necessary for composite action. The shear transfer through the notches generates shear and tensile stresses in both parts of the composite member, which may lead to brittle failure and to an abrupt collapse of the structure. Although simplified design formulas already exist, some structural aspects are still not clear, and a reliable design model is missing. This paper summarizes current design approaches and presents analytical models to understand the shear-carrying mechanism, to estimate the shear stresses acting in the timber and concrete, and to predict failure. The analysis concentrates on three problems: the shearing-off failure of the timber close to the notch, the shear failure of the concrete, and the influence of the shear flow on the gap opening between the timber and concrete. Parts of the model calculations could be compared to experimental observations. The conclusions of this paper contribute to improving current design approaches.
Online Access
Free
Resource Link
Less detail

Analysis of the Timber-Concrete Composite Systems with Ductile Connection

https://research.thinkwood.com/en/permalink/catalogue113
Year of Publication
2013
Topic
Mechanical Properties
Material
Timber-Concrete Composite
Author
Zhang, Chao
Organization
University of Toronto
Year of Publication
2013
Country of Publication
Canada
Format
Thesis
Material
Timber-Concrete Composite
Topic
Mechanical Properties
Keywords
Bending
Ductility
Model
Load Deflection
Tension
Shear Connection
Language
English
Research Status
Complete
Summary
In timber-concrete composite systems, timber and concrete are inherently brittle materials that behave linearly elastic in both tension and bending. However, the shear connection between the members can exhibit significant ductility. It is therefore possible to develop timber-concrete composite systems with ductile connection that behave in a ductile fashion. This study illustrates the use of an elastic-perfectly plastic analytical approach to this problem. In addition, the study proposes an incremental method for predicting the nonlinear load-deflection response of the composite system. The accuracy of the analytical model is confirmed with a computer model, and numerical solutions of the analytical model are compared to experimental results from the bending tests conducted by previous researchers. Reasonable agreement is found from the comparisons, which validates the capacity of the analytical model in predicting the structural behaviour of the timber-concrete composite systems in both elastic and post-elastic stages.
Online Access
Free
Resource Link
Less detail

Applicability of Various Wood Species in Glued Laminated Timber - Parameter Study on Delamination Resistance and Shear Strength

https://research.thinkwood.com/en/permalink/catalogue592
Year of Publication
2014
Topic
Mechanical Properties
Connections
Material
Glulam (Glue-Laminated Timber)
Author
Jiang, Yuan
Schaffrath, Jörg
Knorz, Markus
Winter, Stefan
Van de Kuilen, Jan-Willem
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Mechanical Properties
Connections
Keywords
Hardwood
Softwood
Gluability
Delamination
Shear Strength
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
In a current research project the gluability of various soft- und hardwood species and their applicability in glued laminated timber are investigated. The influence of the processing parameters on the delamination resistance and shear strength of the glue lines are presented in this work. The bonding forces, which are necessary for the integrity of a glue line, act in the interface within a distance that varies from nanometers to micrometers. The parameters that may have significant influence on the bonding strength and durability of adhesive joints are numerous and depend on the type of wood, adhesive and processing conditions.
Online Access
Free
Resource Link
Less detail

250 records – page 1 of 25.