Skip header and navigation

24 records – page 1 of 3.

Advancing Tall Mass Timber Buildings through Seismic Resilience Testing

https://research.thinkwood.com/en/permalink/catalogue2584
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Wood Building Systems
Cores
Organization
University of Nevada
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Wood Building Systems
Cores
Topic
Seismic
Keywords
Rocking Walls
Shake Table Test
Mass Timber
Non-structural Components and Systems
Research Status
In Progress
Notes
Project contact is Keri Ryan at University of Nevada, Reno
Summary
A landmark shake table test of a 10-story mass timber building will be conducted in late 2020. The test program, funded by other sources, will help accelerate the adoption of economically competitive tall timber buildings by validating the seismic performance of a resilient cross-laminated timber (CLT) rocking wall system. In this project, we leverage and extend the test program by including critical nonstructural components and systems (NCS). Including NCSs, which are most vulnerable to rocking induced deformations of the CLT core, allows investigation of the ramification of this emerging structural type on building resiliency. Quantifying interactions amongst vertically and horizontally spanning NCSs during earthquake shaking will allow designers to develop rational design strategies for future installation of such systems. The expected research outcomes are to expand knowledge of rocking wall system interactions with various NCS, identify NCS vulnerabilities in tall timber buildings, and develop solutions to address these vulnerabilities. Moreover, this effort will greatly increase visibility of the test program. The results of this research will be widely disseminated to timber design and NCS communities through conference presentations, online webinars, and distribution to publicly accessible research repositories. 
Less detail

Construction and Seismic Testing of a Resilient Two-Story Mass Timber Structure with Cross Laminated Rocking Walls

https://research.thinkwood.com/en/permalink/catalogue2223
Year of Publication
2018
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Design and Behavior of a Mid-Rise Cross-Laminated Timber Building

https://research.thinkwood.com/en/permalink/catalogue242
Year of Publication
2012
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Lenon, Conor
Organization
Colorado School of Mines
Year of Publication
2012
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Finite Element Model
Shake Table Test
Full Scale
Moment Resistance
Research Status
Complete
Summary
Cross-Laminated Timber (CLT) is a new engineered wood material that was introduced in the past decade as a promising candidate to build structures over 10 stories. So far, a handful of tall CLT buildings have been built in low seismic regions around the world. Full-scaled seismic shaking table tests revealed the vulnerability of this building type when resisting seismically-induced overturning. This study proposes a new analysis and design approach for developing overturning resistance for platform CLT buildings. New structural detailing is proposed to alter the moment-resisting mechanism and enable coupled action through the floor system. The method is applied to the design of a 12-story CLT building, which was evaluated numerically to assess the conservativeness of the design through system level finite element model simulations.
Online Access
Free
Resource Link
Less detail

Development and Full-Scale Validation of Resilience-Based Seismic Design of Tall Wood Buildings: The NHERI Tallwood Project

https://research.thinkwood.com/en/permalink/catalogue1477
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Pei, Shiling
van de Lindt, John
Ricles, James
Sause, Richard
Berman, Jeffrey
Ryan, Keri
Dolan, Daniel
Buchanan, Andrew
Robinson, Thomas
McDonnell, Eric
Blomgren, Hans-Erik
Popovski, Marjan
Rammer, Douglas
Year of Publication
2017
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Tall Wood
Post-Tensioned
Rocking Walls
Resilience-Based Seismic Design
Shaking Table Test
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
With global urbanization trends, the demands for tall residential and mixeduse buildings in the range of 8~20 stories are increasing. One new structural system in this height range are tall wood buildings which have been built in select locations around the world using a relatively new heavy timber structural material known as cross laminated timber (CLT). With its relatively light weight, there is consensus amongst the global wood seismic research and practitioner community that tall wood buildings have a substantial potential to become a key solution to building future seismically resilient cities. This paper introduces the NHERI Tallwood Project recentely funded by the U.S. National Science Fundation to develop and validate a seismic design methodology for tall wood buildings that incorporates high-performance structural and nonstructural systems and can quantitatively account for building resilience. This will be accomplished through a series of research tasks planned over a 4-year period. These tasks will include mechanistic modeling of tall wood buildings with several variants of post-tensioned rocking CLT wall systems, fragility modeling of structural and non-structural building components that affect resilience, fullscale biaxial testing of building sub-assembly systems, development of a resilience-based seismic design (RBSD) methodology, and finally a series of full-scale shaking table tests of a 10-story CLT building specimen to validate the proposed design. The project will deliver a new tall building type capable of transforming the urban building landscape by addressing urbanization demand while enhancing resilience and sustainability.
Online Access
Free
Resource Link
Less detail

Dynamic and Static Lateral Load Tests on Full-Sized 3-Storey CLT Construction for Seismic Design

https://research.thinkwood.com/en/permalink/catalogue481
Year of Publication
2014
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Tsuchimoto, Takahiro
Kawai, Naohito
Yasumura, Motoi
Miyake, Tatsuya
Isoda, Hiroshi
Tsuda, Chihiro
Miura, Sota
Murakami, Satoshi
Nakagawa, Takafumi
Year of Publication
2014
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Shake Table Test
Lateral Load Test
Shear Displacement
Joint Deformation
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The Japanese domestic forests have never been maintained enough, and it was a great fear that the multiple functions of the forest such as watershed conservation, the land conservation, and so on has been declined. The construction employing the cross laminates timber (CLT) panels was offered as a method of large scale building in domestic and foreign countries. However, the seismic design method of CLT panel construction has never completed. So, in order to consider the seismic design method, the shaking table tests and static lateral load tests were conducted to the modelized CLT panel construction.
Online Access
Free
Resource Link
Less detail

Executive Report: Full-Scale Shake Table Testing of a Two-Story Mass Timber Building with Resilient Rocking Wall Lateral System

https://research.thinkwood.com/en/permalink/catalogue1151
Year of Publication
2017
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Wood Building Systems
Author
Pei, Shiling
Year of Publication
2017
Format
Report
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Wood Building Systems
Topic
Seismic
Design and Systems
Keywords
Full Scale
Shake Table Test
Rocking Walls
Research Status
Complete
Summary
This report is prepared for Softwood Lumber Board (SLB) by the NHERI TallWood Project team in order to provide a brief and timely update on the progress and preliminary research findings from the NHERI TallWood Project. This report is focused on the full-scale shake table test of a two-story mass timber building conducted during the summer of 2017 at NHERI@UC San Diego outdoor shake table. The shake table test described in this report was conducted during a three-month period from June to August 2017. As the research team is still working on processing and analyzing the data obtained from the experiments, this report only discusses preliminary findings in a qualitative manner. The research team is expected to produce additional reports and publications based on the test results in the near future.
Online Access
Free
Resource Link
Less detail

Experimental Behaviour of Diaphragms in Post-Tensioned Timber Frame Buildings

https://research.thinkwood.com/en/permalink/catalogue95
Year of Publication
2014
Topic
Connections
Seismic
Material
LVL (Laminated Veneer Lumber)
Application
Floors
Author
Moroder, Daniel
Smith, Tobias
Simonetti, Michele
Carlo Ponzo, Felice
Di Cesare, Antonio
Nigro, Domenico
Pampanin, Stefano
Buchanan, Andrew
Organization
The European Association for Earthquake Engineering
Year of Publication
2014
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Floors
Topic
Connections
Seismic
Keywords
Diaphragms
Lateral Loads
Post-Tensioning
Shake Table Test
Testing
Conference
Second European Conference on Earthquake Engineering and Seismology
Research Status
Complete
Notes
August 25-29, 2014, Istanbul, Turkey
Summary
Floor diaphragms have an important role in the seismic behaviour of structures, as inertia forces are generated by their masses and then transferred to the lateral load resisting system. Diaphragms also link all other structural elements together and provide general stability to the structure. As with most other structural components, there is concern about damage to floor diaphragms because of displacement incompatibilities. This paper describes two different experiments on engineered timber floors connected to post-tensioned timber frames subjected to horizontal loading. First a full scale two-bay post-tensioned frame was loaded with lateral loads through a stressed-skin floor diaphragm. Different connection configurations between the floor units on either side of the central column were tested. Secondly a three dimensional, three storey post-tensioned frame building was tested on a shaking table. The diaphragm consisted of solid timber panels connected to the beams with inclined fully threaded screws. For all tested connections, the diaphragm behaviour was fully maintained throughout the testing and no damage was observed. The test results showed that careful detailing of the floor panel connections near the beam-columnjoint and the flexibility of timber elements can avoid floor damage and still guarantee diaphragm action at high level of drifts in post-tensioned timber frame buildings.
Online Access
Free
Resource Link
Less detail

Experimental seismic behavior of a two-story CLT platform building

https://research.thinkwood.com/en/permalink/catalogue3227
Year of Publication
2019
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Lindt, John W. van de
Furley, Jace
Amini, M. Omar
Pei, Shiling
Tamagnone, Gabriele
Barbosa, Andre R.
Rammer, Doug
Line, Philip
Fragiacomo, Massimo
Popovski, Marjan
Organization
Forest Products Laboratory
Publisher
Elsevier
Year of Publication
2019
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Seismic
Keywords
Shake Table Test
Earthquake
Research Status
Complete
Series
Engineering Structures
Summary
Cross-laminated timber (CLT) manufacturing and construction has been steadily growing since its inception in Europe in the 1990s. In the US, the growth of the CLT adoption is inhibited by the lack of codified design provisions for CLT in high seismic regions. This led to a multi-year study conducted by Colorado State University to investigate suitable seismic design parameters of CLT shear wall systems. This paper presents the results from a series of shake-table tests featuring a full-scale two-story mass-timber building utilizing CLT Seismic Force Resisting Systems (SFRS). The building was designed using an R- factor equal to 4.0 under the equivalent lateral force procedure specifications of the ASCE 7-16 Standard. The test program included three phases with different wall configurations, reflecting different wall panel aspect ratios and the existence of transverse CLT walls. Test results indicate that the code-level life safety objective was achieved in all test configurations. The addition of transverse walls did not affect the ability of the panels to rock, and improved the performance of the building structural system.
Online Access
Free
Resource Link
Less detail

Experimental seismic behaviour of a two-story CLT platform building: design and shake table testing

https://research.thinkwood.com/en/permalink/catalogue3231
Year of Publication
2018
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Author
Lindt, John W. van de
Furley, Jace
Amini, M. Omar
Pei, Shiling
Tamagnone, Gabriele
Barbosa, Andre
Rammer, Doug
Line, Philip
Fragiacomo, Massimo
Popovski, Marjan
Organization
Forest Products Laboratory
Year of Publication
2018
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Seismic
Keywords
Seismic Force Resisting System
FEMA P-695 Methodology
Shake Table Testing
Conference
16th European Conference on Earthquake Engineering
Research Status
Complete
Summary
Since its introduction in Europe more than two decades ago, Cross Laminated Timber (CLT) is viewed as a new-generation of engineered wood products and has found its way into the US construction market. Recent research efforts have demonstrated that CLT can be effectively utilized as a seismic force resisting system. This paper presents the results of part of a study conducted at Colorado State University to systematically investigate seismic behaviour of CLT shear wall systems in regions of high seismicity for use in the United States. Specifically, the results of a full-scale shake table test of a two-storey 223 m2 building. The CLT special shear walls in the building were designed based on a design methodology that resulted from connector and reverse cyclic testing of isolated CLT shear walls using a generic connector. The main design assumption for these walls is that all overturning was resisted by the overturning anchor (tie-down rod or hold-downs) at the wall ends and the shear is resisted by the generic angle brackets connected with nails. The shake table tests were performed in three phases with each phase consisting of a different CLT wall configuration. Phase 1 and 2 were multi-panel configurations with 4:1 (h/b) and 2:1 aspect ratio panels, respectively. Phase 3 was another 4:1 aspect ratio wall with return walls added in the transverse direction to examine their effect on the overall response. The structure was subjected to several ground motions including one scaled to the maximum credible earthquake (MCE), equivalent to a 2475 year return period.
Online Access
Free
Resource Link
Less detail

Full-Scale Shake Table Test of a Two-story Mass-Timber Building with Resilient Rocking Walls

https://research.thinkwood.com/en/permalink/catalogue2067
Year of Publication
2018
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Pei, Shiling
van de Lindt, John
Barbosa, André
Berman, Jeffrey
Blomgren, Hans-Erik
Dolan, James
McDonnell, Eric
Zimmerman, Reid
Fragiacomo, Massimo
Rammer, Douglas
Organization
Colorado School of Mines
Colorado State University
Oregon State University
University of Washington
Washington State University
University of L’Aquila
Year of Publication
2018
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Shake Table Test
Multi-Story
Post-Tensioned
Rocking Walls
Conference
16th European Conference on Earthquake Engineering
Research Status
Complete
Summary
The NHERI TallWood project is a U.S. National Science Foundation-funded four-year research project focusing on the development of a resilient tall wood building design philosophy. One of the first major tasks within the project was to test a full-scale two-story mass timber building at the largest shake table in the U.S., the NHERI at UCSD’s outdoor shake table facility, to study the dynamic behaviour of a mass timber building with a resilient rocking wall system. The specimen consisted of two coupled two-story tall post-tensioned cross laminated timber rocking walls surrounded by mass timber gravity frames simulating a realistic portion of a building floor plan at full scale. Diaphragms consisted of bare CLT at the first floor level and concrete-topped, composite CLT at the roof. The specimen was subjected to ground motions scaled to three intensity levels representing frequent, design basis, and maximum considered earthquakes. In this paper, the design and implementation of this test program is summarized. The performance of the full building system under these different levels of seismic intensity is presented.
Online Access
Free
Resource Link
Less detail

24 records – page 1 of 3.