Through collaboration with the NHERI TallWood Project funded by the National Science Foundation,an alternative non-prestressed cross-laminated timber rocking wall system with replaceable fuse components was developed by Katerra engineers and tested at the outdoor shake table at the University of California San Diego. The objective of this specific design and testing is to prove a concept for a new high performance seismic lateral system that is easy to modularize and install, and can be rapidly repaired after major earthquakes. This paper presents the results from a total of thirteen tests conducted on the proposed system, including several repairs after major shaking. The test results showed that the structural system was damage-free under service level ground motions, and experienced repairable damage at designated connection locations for design basis earthquakes and maximum considered earthquakes. Overall the system was able to limit residual drift to an acceptable level and provide a high load displacement capacity for the building system.
With the increased usage of Cross Laminated Timber (CLT) in the United States, research efforts have been focused on demonstrating CLT as an effective Seismic Force Resisting System (SFRS). Presented in this paper are the findings of full-scale shake table tests of a two-story 223 m2 (2400 ft2) building with two sets of CLT shear walls on the first and second story. The testing consisted of three phases, each with a unique wall configuration, but only the first phase is presented herein, which consisted of a shear wall with 4:1 aspect ratio CLT panels. The structure was subjected to ground motions scaled to intensities that correspond to a Service Level Earthquake (SLE), Design Base Earthquake (DBE), and Maximum Considered Earthquake (MCE) respectively. In all phases and motions the structure performed well and was in accordance with FEMA collapse prevention requirements for each motion intensity.
The national research project to investigate proper structural design method for CLT (Cross Laminated Timber) buildings has been advanced by the subsidy of the Ministry of Land, Infrastructure, Transport and Tourism of Japan since 2011. This paper provides the outline of shake table tests executed as a part of the project in February 2015. Two specimens, one (Specimen A) is five story and another (Specimen B) is three story, were tested. As the result, for both specimens damage was rather slight by the strong input wave according to the Building Standard Law of Japan. Finally, Specimen A survived three dimensional input wave of 100% of JMA Kobe (strong ground motion recorded during Kobe Earthquake in 1995), and Specimen B survived 140% of JMA Kobe.
Many of the woodframe buildings in United States, particularly along the pacific coast, have more than one story with the first floor used either for parking or commercial space which require large openings and few partition walls at that level. This open space condition
results in the earthquake resistance of the first story being significantly lower than the upper stories thus creating first stories that are both “weak” (low strength) and “soft” (low stiffness) in nature. This feature has the potential to allow formation of the soft first story mechanism during earthquakes. The United States National Science Foundation (NSF) – funded NEES-Soft project has been undertaken to develop and validate economical retrofit concepts for these types of buildings. Shake table tests on a four-story full scale model building were performed with different retrofit schemes as part of the experimental investigation. One of the retrofit measures investigated was addition of cross laminated timber rocking walls at the first floor level for increased seismic resistance. This paper focuses on the experimental performance of soft-story buildings retrofitted with cross laminated timber rocking walls. Moderate damage was observed at the first story level of the building while theupper three stories exhibited very little signs of distress. The focus of this paper is to establish correlation between the observed damage and drift. The Cross laminated timber (CLT) rocking walls were designed as per FEMA P-807 guidelines to satisfy the San Francisco mandatory softstory retrofit ordinance requirements. The tests confirmed the efficiency of CLT retrofit with expected levels of drifts throughout the structure.