Skip header and navigation

3 records – page 1 of 1.

Artificial Neural Network for Assessment of Energy Consumption and Cost for Cross Laminated Timber Office Building in Severe Cold Regions

https://research.thinkwood.com/en/permalink/catalogue1206
Year of Publication
2018
Topic
Energy Performance
Cost
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Dong, Qi
Xing, Kai
Zhang, Hongrui
Publisher
MDPI
Year of Publication
2018
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Cost
Keywords
Energy Consumption
Office Buildings
Severe Cold Regions
Artificial Neural Network
Language
English
Research Status
Complete
Series
Sustainability
ISSN
2071-1050
Summary
This paper aims to develop an artificial neural network (ANN) to predict the energy consumption and cost of cross laminated timber (CLT) office buildings in severe cold regions during the early stage of architectural design. Eleven variables were selected as input variables including building form and construction variables, and the values of input variables were determined by local building standards and surveys. ANNs were trained by the simulation data and Latin hypercube sampling (LHS) method was used to select training datasets for the ANN training. The best ANN was obtained by analyzing the output variables and the number of hidden layer neurons. The results showed that the ANN with multiple outputs presented better prediction performance than the ANN with single output. Moreover, the number of hidden layer neurons in ANN should be greater than five and preferably 10, and the best mean square error (MSE) value was 1.957 × 103. In addition, it was found that the time of predicting building energy consumption and cost by ANN was 80% shorter than that of traditional building energy consumption simulation and cost calculation method
Online Access
Free
Resource Link
Less detail

Assessing Cross Laminated Timber (CLT) as an Alternative Material for Mid-Rise Residential Buildings in Cold Regions in China—A Life-Cycle Assessment Approach

https://research.thinkwood.com/en/permalink/catalogue1209
Year of Publication
2016
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Liu, Ying
Guo, Haibo
Sun, Cheng
Chang, Wen-Shao
Publisher
MDPI
Year of Publication
2016
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Life-Cycle Assessment
Cradle-to-Grave
China
Cold Regions
Severe Cold Regions
Energy Consumption
Mid-Rise
Residential
Language
English
Research Status
Complete
Series
Sustainability
Summary
Timber building has gained more and more attention worldwide due to it being a generic renewable material and having low environmental impact. It is widely accepted that the use of timber may be able to reduce the embodied energy of a building. However, the development of timber buildings in China is not as rapid as in some other countries. This may be because of the limitations of building regulations and technological development. Several new policies have been or are being implemented in China in order to encourage the use of timber in building construction and this could lead to a revolutionary change in the building industry in China. This paper is the first one to examine the feasibility of using Cross Laminated Timber (CLT) as an alternative solution to concrete by means of a cradle-to-grave life-cycle assessment in China. A seven-storey reference concrete building in Xi’an was selected as a case study in comparison with a redesigned CLT building. Two cities in China, in cold and severe cold regions (Xi’an and Harbin), were selected for this research. The assessment includes three different stages of the life span of a building: materialisation, operation, and end-of-life. The inventory data used in the materialisation stage was mostly local, in order to ensure that the assessment appropriately reflects the situation in China. Energy consumption in the operation stage was obtained from simulation by commercialised software IESTM, and different scenarios for recycling of timber material in the end-of-life are discussed in this paper. The results from this paper show that using CLT to replace conventional carbon intensive material would reduce energy consumption by more than 30% and reduce CO2 emission by more than 40% in both cities. This paper supports, and has shown the potential of, CLT being used in cold regions with proper detailing to minimise environmental impact.
Online Access
Free
Resource Link
Less detail

A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China

https://research.thinkwood.com/en/permalink/catalogue1207
Year of Publication
2017
Topic
Energy Performance
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Guo, Haibo
Liu, Ying
Meng, Yiping
Huang, Haoyu
Sun, Cheng
Shao, Yu
Publisher
MDPI
Year of Publication
2017
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Environmental Impact
Keywords
Energy Consumption
Carbon Emissions
Residential
Severe Cold Regions
Simulation
Reinforced Concrete
Life-Cycle Assessment
Language
English
Research Status
Complete
Series
Sustainability
ISSN
2071-1050
Summary
This paper aims to investigate the energy saving and carbon reduction performance of cross-laminated timber residential buildings in the severe cold region of China through a computational simulation approach. The authors selected Harbin as the simulation environment, designed reference residential buildings with different storeys which were constructed using reinforced concrete (RC) and cross-laminated timber (CLT) systems, then simulated the energy performance using the commercial software IESTM and finally made comparisions between the RC and CLT buildings. The results show that the estimated energy consumption and carbon emissions for CLT buildings are 9.9% and 13.2% lower than those of RC buildings in view of life-cycle assessment. This indicates that the CLT construction system has good potential for energy saving when compared to RC in the severe cold region of China. The energy efficiency of residential buildings is closely related to the height for both RC and CLT buildings. In spite of the higher cost of materials for high-rise buildings, both RC and CLT tall residential buildings have better energy efficiency than low-rise and mid-rise buildings in the severe cold region of China.
Online Access
Free
Resource Link
Less detail