Skip header and navigation

4 records – page 1 of 1.

Diaphragmatic Behaviour of Hybrid Cross-Laminated Timber Steel Floors

https://research.thinkwood.com/en/permalink/catalogue1909
Year of Publication
2018
Topic
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Author
Loss, Cristiano
Gobbi, Filippo
Tannert, Thomas
Year of Publication
2018
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Topic
Seismic
Mechanical Properties
Keywords
Hybrid
Prefabrication
Modular
Load Distribution
Numerical Analysis
Sensitivity Analysis
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 20-23, 2018, Seoul, Republic of Korea
Summary
The diaphragmatic behaviour of floors represents one important requirement for earthquake resistant buildings since diaphragms connect the lateral load resisting systems at each floor level and transfer the seismic forces to them as a function of their in-plane stiffness. This paper presents an innovative hybrid timber-steel solution for floor diaphragms developed by coupling cross-laminated timber panels with cold-formed custom-shaped steel beams. The floor consists of prefabricated repeatable units which are fastened on-site using pre-loaded bolts and self-tapping screws, thus ensuring a fast and efficient installation. An experimentally validated numerical model is used to evaluate the influence of the; i) in-plane floor stiffness; ii) aspect ratio and shape of the building plan; and iii) relative stiffness and disposition of the shear walls, on the load distribution to the shear walls. The load transfer into walls and lateral deformation of the construction system primarily depend on the adopted layouts of shear walls, and for most cases an in-plane stiffness of floors two times larger than that of walls is recommended.
Online Access
Free
Resource Link
Less detail

Energy Consumption Analysis of Multistory Cross-Laminated Timber Residential Buildings: A Comparative Study

https://research.thinkwood.com/en/permalink/catalogue695
Year of Publication
2016
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Khavari, Ali
Pei, Shiling
Tabares-Velasco, Paulo
Publisher
American Society of Civil Engineers
Year of Publication
2016
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Energy Consumption
Energy Efficiency
Residential
Sensitivity Analysis
Research Status
Complete
Series
Journal of Architectural Engineering
Summary
Cross-laminated timber (CLT) is a new panelized mass timber product that is suitable for building tall wood buildings (higher than eight stories) because of its structural robustness and superior fire resistance as compared with traditional light-framed wood systems. A number of tall CLT buildings have been constructed around the world in the past decade, and taller projects are being planned. The energy efficiency of this emerging building type was evaluated numerically in this comparative study with the use of a building energy simulation program. A 10-story multiunit residential building model constructed using CLT was simulated and compared with a light-frame metal construction model with the same floor plan. A sensitivity analysis was also conducted to study the impact of different weather profiles, building types, and internal load conditions on building energy consumption performance. It was concluded that CLT generally provides significant improvement on heating energy efficiency as a heavy and air-tight envelope, but its energy performance efficiency can be affected by weather, building size, internal loading, and HVAC control.
Online Access
Free
Resource Link
Less detail

Investigation and Optimization of Connections in Timber Assemblies Subjected to Blast Loading

https://research.thinkwood.com/en/permalink/catalogue2509
Year of Publication
2020
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

Predicting Fire Resistance Ratings of Timber Structures Using Artificial Neural Networks

https://research.thinkwood.com/en/permalink/catalogue2383
Year of Publication
2020
Topic
Fire
Application
Wood Building Systems
Floors
Author
Tung, Pham Thanh
Hung, Pham Thanh
Publisher
National University of Civil Engineering
Year of Publication
2020
Format
Journal Article
Application
Wood Building Systems
Floors
Topic
Fire
Keywords
Artificial Neural Network
Fire Resistance
Sensitivity Analysis
Wooden Floor Assembly
Research Status
Complete
Series
Journal of Science and Technology in Civil Engineering
Online Access
Free
Resource Link
Less detail