Skip header and navigation

7 records – page 1 of 1.

An Uplift Friction Damper for Seismically Resilient Mass-Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2799
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Organization
Michigan Technological University
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Topic
Design and Systems
Seismic
Keywords
Seismic Force Resisting System
Uplift Friction Damper
Energy Dissipation
Self-Centering
Numerical Model
Tall Wood Buildings
National Earthquake Hazards Reduction Program
Research Status
In Progress
Notes
Project contact is Daniel Dowden at Michigan Technological University
Summary
This award will investigate a low-damage solution for cross-laminated timber (CLT) seismic force-resisting systems (SFRSs) using a novel uplift friction damper (UFD) device for seismically resilient mass-timber buildings. The UFD device will embrace the natural rocking wall behavior that is expected in tall CLT buildings, provide stable energy dissipation, and exhibit self-centering characteristics. Structural repair of buildings with these devices is expected to be minimal after a design level earthquake. Although CLT has emerged as a construction material that has revitalized the timber industry, there exists a lack of CLT-specific seismic energy dissipation devices that can integrate holistically with the natural kinematics of CLT-based SFRSs. CLT wall panels themselves do not provide any measurable seismic energy dissipation. As a payload to the large-scale, ten-story CLT building specimen to be tested on the Natural Hazards Engineering Research Infrastructure (NHERI) shake table at the University of California, San Diego, as part of NSF award 1636164, “Collaborative Research: A Resilience-based Seismic Design Methodology for Tall Wood Buildings,” this project will conduct a series of tests with the UFD devices installed on the CLT building specimen. These tests will bridge analytical and numerical models with the high fidelity test data collected with realistic boundary and earthquake loading conditions. The calibrated models will be incorporated in a probabilistic numerical framework to establish a design methodology for seismically resilient tall wood buildings, leading to a more diverse and eco-sustainable urban landscape. This project will provide local elementary school outreach activities, integrate participation of undergraduate minorities and underrepresented groups into the research activities, and foster graduate level curriculum innovations. Project data will be archived and made available publicly in the NSF-supported NHERI Data Depot (https://www.DesignSafe-CI.org). This award contributes to NSF's role in the National Earthquake Hazards Reduction Program (NEHRP). The research objectives of this payload project are to: 1) bridge the fundamental mechanistic UFD models linking analytical and numerical models necessary for seismic response prediction of seismically resilient CLT-based SFRSs, 2) characterize the fundamental dynamic UFD behavior with validation and calibration through large-scale tests with realistic boundary conditions and earthquake loadings, and 3) integrate low-damage, friction-based damping system alternatives within a resilience-based seismic design methodology for tall wood buildings. To achieve these objectives, the test data collected will provide a critical pathway to reliably establish numerical and analytical models that extend the shake table test results to a broad range of archetype buildings. The seismic performance of mass-timber archetype building systems will be established through collapse risk assessment using incremental dynamic analyses. This will provide a first step in the longer term goal of establishing code-based seismic performance factors for CLT-based SFRSs.
Resource Link
Less detail

Displacement Design Procedure for Cross Laminated Timber (CLT) Rocking Walls with Sacrificial Dampers

https://research.thinkwood.com/en/permalink/catalogue395
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Gu, Mengzhe
Pang, Weichiang
Schiff, Scott
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2015
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Seismic
Keywords
Energy Dissipation
Ductile Behavior
U-Shaped Flexural Plates
Self-centering Mechanism
Conference
Structures Congress 2015
Research Status
Complete
Notes
April 23–25, 2015, Portland, Oregon, USA
Summary
This paper presents the preliminary design of a rocking Cross-laminated Timber (CLT) wall using a displacement-based design procedure. The CLT wall was designed to meet three performance expectations: immediate occupancy (IO), life safety (LS), and collapse prevention (CP). Each performance expectation is defined in terms of an inter-story drift limit with a predefined non-exceedance probability at a given hazard level. U-shape flexural plates were used to connect the vertical joint between the CLT panels to obtain a ductile behavior and adequate energy dissipation during seismic motion. A design method for ensuring self-centering mechanism is also presented.
Online Access
Payment Required
Resource Link
Less detail

Experimental Investigation of Self-Centering Cross Laminated Timber Walls

https://research.thinkwood.com/en/permalink/catalogue1654
Year of Publication
2016
Topic
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Ganey, Ryan
Berman, Jeffrey
Yao, Lihong
Dolan, Daniel
Akbas, Tugce
Loftus, Sara
Sause, Richard
Ricles, James
Pei, Shiling
van de Lindt, John
Blomgren, Hans-Erik
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Seismic
Mechanical Properties
Keywords
Lateral Load Resisting System
Post-Tensioning
U-Shaped Flexural Plates
Limit States
Self-Centering
Strength
Stiffness
Interstory Drifts
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3547-3554
Summary
This paper describes experiments conducted to develop a resilient lateral force resisting wall system that combines cross-laminated timber (CLT) panels with vertical post-tensioning (PT) to provide post-event re-centering. Supplemental mild steel U-shaped flexural plate devices (UFPs) are intended to yield under cyclic loading while the PT and CLT components remain undamaged until large inter-story drifts are experienced by the wall. The experiments were designed to explore various limit states for self-centering CLT (SC-CLT) walls, including their dependence on design variables and their impact on performance, and to investigate strength and stiffness degradation at large interstory drifts. It was found that the SC-CLT walls were able to re-center even after large drift cycles and the crushing of the CLT material was the governing limit sate for most specimens. A hierarchy of desirable limit states was identified consisting of UFP yielding, CLT splitting, PT yielding, and CLT crushing.
Online Access
Free
Resource Link
Less detail

Investigation into the Hysteretic Performance of Self-Centering Timber Beam-to-Column Joints

https://research.thinkwood.com/en/permalink/catalogue1562
Year of Publication
2016
Material
Glulam (Glue-Laminated Timber)
Author
Wang, Kangli
Li, Zheng
He, Minjuan
Year of Publication
2016
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Keywords
China
Post-Tensioned
Self-Centering
Energy Dissipation
Joint
Cyclic Loading Tests
Hysteretic Behaviour
Moment-Resisting Capacity
Failure Mechanism
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1540-1547
Summary
The seismic performance of a post-tensioned (PT) energy dissipating beam-to-column joint for glulam heavy timber structure is investigated in this paper. Such connection incorporates post-tensioned high-strength strand to provide self-centering capacity along with energy dissipating produced by a special steel cap, which is attached with the timber beam and also to prevent the end bearing failure of wood. The moment-rotation behaviour of the proposed posttensioned timber joint was investigated through a series of cyclic loading tests. The timber joint was loaded at the end of the beams to produce a moment at the joint, and the tests were conducted with three different post-tension forces in the steel strand. The hysteretic behaviour and self-centering capacity of the joint are evaluated based on the results from cyclic loading tests. The failure mechanism of the joint was illustrated through test observations, and the momentresisting capacity and energy dissipation of the joint were analysed with regard to various drift level. This research aims to provide possible solutions to minimize the residual deformation of heavy timber structure made of glulam in China.
Online Access
Free
Resource Link
Less detail

Seismic Resilient Structures with Cross Laminated Timber (CLT) Walls Coupled with Innovative Resilient Slip Friction (RSF) Joints

https://research.thinkwood.com/en/permalink/catalogue1478
Year of Publication
2017
Topic
Design and Systems
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Hashemi, Ashkan
Quenneville, Pierre
Zarnani, Pouyan
Year of Publication
2017
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Design and Systems
Seismic
Mechanical Properties
Keywords
Timber-Steel Hybrid
Lateral Load Resisting System
Resilient Slip Friction Joint
Self-Centering
Energy Dissipation
Numerical Model
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
There is an increasing public pressure to have damage avoidant structural systems in order to minimize the destruction after severe earthquakes with no post-event maintenance. This study presents and investigates a hybrid steel-timber damage avoidant Lateral Load Resisting System (LLRS) using Cross Laminated Timber (CLT) walls coupled with innovative Resilient Slip Friction (RSF) joints and boundary steel columns. RSF joints are used as ductile links between the adjacent walls or between the walls and the columns. These joints are capable to provide a self-centring behaviour (the main deficiency of conventional friction joints) in addition to a high rate of energy dissipation all in one compact device. One significant advantage of this system is that there are practically no bending stresses in the CLT panels which considerably increases the allowable capacity of the system. A numerical model for a four story prototype building containing the proposed concept is developed and subjected to time-history simulations. The results confirm that this system can be considered as the new generation of resilient LLRSs for different types of structures.
Online Access
Free
Resource Link
Less detail

Seismic Resistant Cross Laminated Timber Structures Using an Innovative Resilient Friction Damping System

https://research.thinkwood.com/en/permalink/catalogue1479
Year of Publication
2017
Topic
Connections
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Hashemi, Ashkan
Valadbeigi, Armin
Masoudnia, Reza
Zarnani, Pouyan
Year of Publication
2017
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Connections
Seismic
Mechanical Properties
Keywords
Resilient Slip Friction Joint
Energy Dissipation
Self-Centering
Hold-Down
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
Multi-storey timber structures are becoming progressively desirable owing to their aesthetic and environmental benefits and to the high strength to weight ratio of timber. A recent trend in timber building industry is toward cross laminated timber (CLT) panelized structures. The shake table tests within the SOFIE project have shown that the CLT buildings constructed with traditional methods can experience high damage especially at the connections which generally consist of hold-down brackets and shear connectors with mechanical fasteners such as nails or bolts. Thus, current construction methods are not recognised as reliable in seismic prone areas. The main objective of this project is to develop a new low damage structural concept using innovative resilient slip friction (RSF) damping devices. The component test results demonstrate the capacity of this novel joint for dissipating earthquake energy as well as self-centring to minimize the damage and the residual drift after a severe event. The application of RSF joints as holddown connectors for walls were investigated through numerical studies. Moreover, a core wall system comprised of cross laminated timber and RSF connectors is subjected to time-history earthquake simulations. The numerical results exhibit no residual displacement alongside a significant reduction in peak acceleration which can be attributed to significant amount of dissipated seismic energy over the RSF joints within the system.
Online Access
Free
Resource Link
Less detail

Structural health monitoring data collected during construction of a mass-timber building with a data platform for analysis

https://research.thinkwood.com/en/permalink/catalogue2986
Year of Publication
2021
Topic
Serviceability
Material
MPP (Mass Plywood Panel)
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Baas, Esther J.
Riggio, Mariapaola
Barbosa, André R.
Organization
Oregon State University
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Material
MPP (Mass Plywood Panel)
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Serviceability
Keywords
Big Data
Construction Monitoring
Self-centering Rocking Wall
Structural Health Monitoring
Timber Monitoring
Research Status
Complete
Series
Data in Brief
Summary
The George W. Peavy Forest Science Complex, or “Peavy Hall,” is a mass-timber university building that is the subject of a structural health monitoring (SHM) program to create a comprehensive building performance dataset. The building substructure consists of cross-laminated timber (CLT)-concrete composite floors, a mass plywood panel (MPP) roof system, and the world's first application of CLT post-tensioned (PT) self-centering shear walls. This document reports on static and hygrothermal data collected during the final ten months of building construction that were used to validate a proposed methodological approach to SHM for mass-timber buildings under construction, described in A Methodological Approach for Structural Health Monitoring of Mass-Timber Buildings Under Construction [1]. These data, available in the repository at https://osf.io/jdz6y/, include wood moisture content of CLT, MPP, and glulam structural components, horizontal and vertical displacements of axially loaded CLT panels, tension loss of PT steel rods within CLT self-centering walls, and indoor and outdoor environmental conditions such as temperature, relative humidity, rain quantities, wind speeds, as well as wind directions. Additionally, data figures and analysis coding files are included in the repository to further define processes and allow for potential use of the analysis tools for similar projects.
Online Access
Free
Resource Link
Less detail

7 records – page 1 of 1.