As a building material, engineered bamboo has caught attention around the world due to its advantages in energy conservation and environmental protection. The seismic performance of bamboo buildings needs to be evaluated to further promote the use of bamboo materials in building construction. We studied the seismic response of a 3-story bamboo frame structure numerically using nonlinear dynamic time history analysis. A simplified modeling method for bamboo column-beam joints was proposed in the numerical model. The hysteresis behaviour of the joint was simulated by Pinching 4 material in OpenSEES, with the parameters calibrated through test results. Comparative analysis shows that the proposed modeling method could reasonably reflect the pinching effect and the degradation of the joint hysteretic behavior. A total of 20 ground motions with three intensities were involved in the nonlinear dynamic analysis. The results demonstrate that the frame meets target performance levels, providing evidence for the further popularization of engineered bamboo structures.
Balloon type cross laminated timber (CLT) rocking shear walls are a novel seismic force resisting system. In this paper, the seismic performance of four 12-story balloon type CLT rocking shear walls, designed by a structural engineering firm located in Vancouver (Canada) using the performance-based design procedure outlined in the technical guideline published by the Canadian Construction Materials center (CCMC)/National Research Council Canada (NRC), is assessed. The seismic performance of the prototype CLT rocking shear walls was investigated using nonlinear time history analyses. Robust nonlinear finite element models were developed using OpenSees and the nonlinear behavior of the displacement-controlled components was calibrated using available experimental data. A detailed site-specific hazard analysis was conducted and sets of ground motions suitable for the prototype buildings were selected. The ground motions were used in a series of incremental dynamic analyses (IDAs) to quantify the adjustable collapse margin ratio (ACMR) of the prototype balloon type CLT rocking shear walls. The results show that the prototype balloon type CLT rocking shear walls designed using the performance-based design procedure outlined in the CCMC/NRC technical guideline have sufficient ACMR when compared to the acceptable limits recommended by FEMA P695.
Simplified seismic design procedures mostly recommend the adoption of rigid floor diaphragms when forming a building’s lateral force-resisting structural system. While rigid behavior is compatible with many reinforced concrete or composite steel-concrete floor systems, the intrinsic stiffness properties of wood and ductile timber connections of timber floor slabs typically make reaching a such comparable in-plane response difficult. Codes or standards in North America widely cover wood-frame construction, with provisions given for both rigid and flexible floor diaphragms designs. Instead, research is ongoing for emerging cross-laminated-timber (CLT) and hybrid CLT-based technologies, with seismic design codification still currently limited. This paper deals with a steel-CLT-based hybrid structure built by assembling braced steel frames with CLT-steel composite floors. Preliminary investigation on the performance of a 3-story building under seismic loads is presented, with particular attention to the influence of in-plane timber diaphragms flexibility on the force distribution and lateral deformation at each story. The building complies with the Italian Building Code damage limit state and ultimate limit state design requirements by considering a moderate seismic hazard scenario. Nonlinear static analyses are performed adopting a finite-element model calibrated based on experimental data. The CLT-steel composite floor in-plane deformability shows mitigated effects on the load distribution into the bracing systems compared to the ideal rigid behavior. On the other hand, the lateral deformation always rises at least 17% and 21% on average, independently of the story and load distribution along the building’s height.
The 2nd Mass Timber Research Needs Assessment Workshop was held on November 13-14, 2018 at the US Forest Service, Forest Products Laboratory (FPL). The purpose of the workshop was to convene a group of experts on cross laminated timber and mass timber to develop a list of prioritized research needs for the North American mass timber industry. The workshop had over 100 attendees including design professionals, academics, industry leaders, and government employees. The attendees generated a list of over 117 research needs. After the workshop, the list of 117 research needs was prioritized through the use of an online survey. This paper presents highlights of the top research needs generated at the 2nd Mass Timber Research Needs Assessment Meeting.
Braced timber frames (BTFs) are one of the most efficient structural systems to resist lateral loads induced by earthquakes or high winds. Although BTFs are implemented as a system in the National Building Code of Canada (NBCC), no design guidelines currently exist in CSA O86. That not only leaves these efficient systems out of reach of designers, but also puts them in danger of being eliminated from NBCC. The main objective of this project is to generate the technical information needed for development of design guidelines for BTFs as a lateral load resisting system in CSA O86. The seismic performance of 30 BTFs with riveted connections was studied last year by conducting nonlinear dynamic analysis; and also 15 glulam brace specimens using bolted connections were tested under cyclic loading.
In the second year of the project, a relationship between the connection and system ductility of BTFs was derived based on engineering principles. The proposed relationship was verified against the nonlinear pushover analysis results of single- and multi-storey BTFs with various building heights. The influence of the connection ductility, the stiffness ratio, and the number of tiers and storeys on the system ductility of BTFs was investigated using the verified relationship. The minimum connection ductility for different categories (moderately ductile and limited ductility) of BTFs was estimated.
Recent interests in adopting sustainable materials and developments in construction technology have created a trend of aiming for greater heights with timber buildings. With the increased height these buildings are subjected to higher level of lateral load demand. A common and efficient way to increase capacity is to use shearwalls, which can resist significant part of the load on the structures. Prefabricated mass timber panels such as those made of Cross-Laminated Timber (CLT) can be used to form the shearwalls. But due to relatively low stiffness value of timber it is often difficult to keep the maximum drifts within acceptable limit prescribed by building codes. It becomes necessary to either increase wall sizes to beyond available panel dimensions or use multiple or groups of walls spread over different locations over the floor plan. Both of the options are problematic from the economic and functional point of view. One possible alternative is to adopt a Hybrid system, using Steel Plate Shear Walls (SPSW) with timber moment frames. The SPSW has much higher stiffness and combined with timber frames it can reduce overall building drifts significantly. Frames with prefabricated timber members have considerable lateral load capacity. For structures located in seismic regions the system possesses excellent energy dissipation ability with combination of ductile SPSW and yielding elements within the frames. This paper investigates combination of SPSW with timber frames for seismic applications. Numerical model of the system has been developed to examine the interaction between the frames and shear walls under extreme lateral load conditions. Arrangements of different geometries of frames and shear walls are evaluated to determine their compatibility and efficiency in sharing lateral loads. Recommendations are presented for optimum solutions as well as practical limits of applications.
Since 2010, the construction of post-tensioned wooden buildings (Pres-Lam) has been growing rapidly worldwide. Pres-Lam technology combines unbonded post-tensioning tendons and supplemental damping devices to provide moment capacity to beam–column, wall–foundation, or column–foundation connections. In low seismic areas, designers may choose not to provide additional damping, relying only on the post-tensioning contribution. However, post-tensioning decreases over time due to creep phenomena arising in compressed timber members. As a consequence, there is a reduction of the clamping forces between the elements. This reduction affects the seismic response of Pres-Lam buildings in the case of low- and high-intensity earthquakes. Therefore, understanding and accounting for the post-tensioning losses and their uncertainty are paramount for a robust assessment of the safety of Pres-Lam constructions. So far, however, there have been no comprehensive studies which tackle the overall seismic performance of such systems in the presence of time-varying post-tension losses and the associated uncertainty. This study tackles this research gap by introducing a comprehensive seismic evaluation of Pres-Lam systems based on time-dependent fragility curves. The proposed fragility analysis is specifically designed to account systematically for time-varying post-tension losses and the related uncertainty. The method is applied to two case studies, designed, respectively, with and without supplemental damping devices. In terms of structural performance, results show that the use of additional dissipaters mitigates the effect of post-tensioning loss for earthquakes of high intensity. Conversely, performance under low-intensity earthquakes is strongly dependent on the post-tensioning value, as the reduction of stiffness due to the anticipated rocking motion activation would lead to damage to non-structural elements.
The 2nd Mass Timber Research Needs Assessment was held on November 13–14, 2018, at the USDA Forest Service, Forest Products Laboratory (FPL). The workshop was co-sponsored by FPL, WoodWorks, and the U.S. Endowment for Forestry and Communities. The purpose of the workshop was to gather a diverse group of people with expertise in mass timber, in particular cross-laminated timber, to discuss and prioritize research needed to move the mass timber industry forward in North America. The workshop was attended by more than 100 design professionals, researchers, manufacturers, industry leaders, and government employees. The meeting resulted in a list of 117 research needs. Following the meeting, the list of research needs was prioritized through an online survey. This report presents the prioritized research needs of the mass timber industry in North America. Also included in the appendixes are the formal minutes of the workshop, a list of participants, and the original scribe notes.
Braced mass timber (MT) frames are one of the most efficient structural systems to resist lateral loads induced by earthquakes or high winds. Although braced frames are presented as a system in the National Building Code of Canada (NBCC), no design guidelines currently exist in CSA O86. That not only leaves these efficient systems out of reach of designers, but also puts them in danger of being eliminated from NBCC. The main objective of this project was to develop the technical information needed for development of design guidelines for braced MT frames as a lateral load resisting system in CSA O86.
In the first year of the project, the seismic performance of thirty (30) braced MT frames with riveted connections with various numbers of storeys, storey heights, and bay aspect ratios were studied by conducting non-linear pushover and dynamic time-history analyses. Also, fifteen (15) glulam brace specimens using bolted connections with different slenderness ratios were tested under monotonic and cyclic loading. Results from this multi-year project will form the basis for developing comprehensive design guidelines for braced frames in CSA O86.
The innovation in tall mass-timber buildings is illustrated by the Brock Commons student residence at the University of British Columbia also known as the UBC Tall Wood Building. It is amongst the world’s tallest timber hybrid building with 18 stories and 53 meters’ height. The building has 17 stories of mass-timber superstructure resting on a concrete podium with two concrete cores that act as a lateral force resisting system for earthquake and wind forces. Construction of the mass-timber superstructure took ten weeks whereas the concrete cores were built in fourteen weeks. There could have been a substantial reduction in the project timeline leading to cost savings, as well as a further reduction of environmental footprint if mass-timber had been used for the cores. The objective of this work was to evaluate the possibility to design the UBC Tall Wood Building using mass-timber cores. A validated numerical model was used to study the feasibility of replacing the concrete cores by cores made of Cross Laminated Timber (CLT). The results presented herein show that, with adjustments in the configuration, the structure can meet the seismic performance criteria as per the Canadian code with CLT cores.