Skip header and navigation

4 records – page 1 of 1.

Design Options for Three- and Four-Storey Wood School Buildings in British Columbia

https://research.thinkwood.com/en/permalink/catalogue2373
Year of Publication
2019
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Application
Wood Building Systems
Author
Bevilacqua, Nick
Dickof, Carla
Wolfe, Ray
Gan, Wei-Jie
Embury-Williams, Lynn
Organization
Fast + Epp
Wood Works! BC
Thinkspace
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Construction
Education
School Buildings
Mass Timber
Multi-Storey
Building Code
Fire Protection
Language
English
Research Status
Complete
Summary
This study illustrates the range of possible wood construction approaches for school buildings that are up to four storeys in height. As land values continue to rise, particularly in higher-density urban environments, schools with smaller footprints will become increasingly more necessary to satisfy enrollment demands. There are currently a number of planned new school projects throughout British Columbia that anticipate requiring either three-or four-storey buildings, and it is forecasted that the demand for school buildings of this size will continue to rise. This study is closely related to the report Risk Analysis and Alternative Solution for Three- and Four-Storey Schools of Mass Timber and/or Wood-Frame Construction prepared by GHL Consultants, which explores the building code related considerations of wood construction for school buildings that are up to four storeys in height. Though wood construction offers a viable structural material option for these buildings, the British Columbia Building Code (BCBC 2018) currently limits schools comprised of wood construction to a maximum of two storeys, while also imposing limits on the overall floor area. As such, the reader is referred to the GHL report for further information regarding building code compliance (with a particular emphasis on fire protection) for wood school buildings.
Online Access
Free
Resource Link
Less detail

Risk Analysis and Alternative Solution for Three- and Four-Storey Schools of Mass Timber and/or Wood-Frame Construction

https://research.thinkwood.com/en/permalink/catalogue2374
Year of Publication
2019
Topic
Design and Systems
Market and Adoption
Fire
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Application
Wood Building Systems
Organization
GHL Consultants Ltd.
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Application
Wood Building Systems
Topic
Design and Systems
Market and Adoption
Fire
Keywords
Building Code
Education
School Buildings
Multi-Storey
Fire Test
Fire Safety
Technical Risk
Process Risk
Mass Timber
Language
English
Research Status
Complete
Summary
This report explores the building code related considerations of wood construction for school buildings that are up to four storeys in height. Though wood construction offers a viable structural material option for these buildings, the British Columbia Building Code (BCBC 2018) currently limits schools comprised of wood construction to a maximum of two storeys. Three- and four-storey schools and larger floor areas in wood construction require an Alternative Solution. The report identifies key fire safety features offered by combustible construction materials including tested and currently widely available engineered mass timber products, such as glued-laminated timber and cross-laminated timber. A risk analysis identifies the risk areas defined by the objectives of the British Columbia Building Code (BCBC 2018) and evaluates the level of performance of the Building Code solutions for assembly occupancies vis-à-vis the level of performance offered by the proposed schools up to four storeys in building height. As land values continue to rise, particularly in higher-density urban environments, schools with smaller footprints will become increasingly more necessary to satisfy enrollment demands. There are currently a number of planned new school projects throughout British Columbia that anticipate requiring either three-or four-storey buildings, and it is forecasted that the demand for school buildings of this size will continue to rise. This report is closely related to the study Design Options for Three-and Four-Storey Wood School Buildings in British Columbia, which illustrates the range of possible timber construction approaches for school buildings that are up to four storeys in height.
Online Access
Free
Resource Link
Less detail

Thermal Performance and Apparent Temperature in School Buildings: A Case of Cross-Laminated Timber (CLT) School Development

https://research.thinkwood.com/en/permalink/catalogue2717
Year of Publication
2020
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Adekunle, Timothy
Publisher
Elsevier
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Apparent Temperature
Thermal Performance
Wet-bulb Globe Temperature
Standard Effective Temperature
Universal Thermal Climate Index
School Buildings
Language
English
Research Status
Complete
Series
Journal of Building Engineering
Summary
This paper examines the performance and apparent temperature in cross-laminated timber (CLT) school buildings. The research presents empirical data on the performance and provides the first set of data on apparent temperature in CLT school buildings. The development is in the New England area of the Northeast of the US. The investigation was conducted in the summertime. The principal aim of the investigation is to evaluate the performance, occupants’ comfort, apparent temperature, and other thermal indices concurrently in CLT school buildings. The research intends to understand if occupants of CLT school buildings are susceptible to thermal stress in summer and assess whether apparent temperatures are consistent with sensation. The study also discusses other indices, practical implications, and applications of the outcomes. To achieve the research aim, the study considered the field measurements of variables. Occupants’ comfort is accessed using the PMV and adaptive methods of various comfort standards. During the survey, the development was occupied from 8am-6pm and partly operated from 7pm-7am. The mean temperatures during the occupied and non-occupied periods varied from 22.1°C-22.4°C. The overall RH was 59.2%. The PMV range and sensation showed the occupants were comfortable. Approximately 80% of the users were satisfied with the thermal environment. The temperatures were within the acceptable bands of ASHRAE-55, CIBSE TM52, and EN16798-1 thermal comfort models. The results showed that the apparent temperatures are consistent with the outcomes of the sensation at different periods. The mean indices ranged from 18.8°C-23.5°C. The study recommends that further research should be conducted on occupants’ comfort and heat indices in school buildings during the first few hours of occupation to understand changes that occupants can make to remove unwanted heat from the thermal environment. The study also recommends that various designers should consider heat stress analyses along with thermal comfort assessment at the design phase to determine possible interventions to improve the thermal environment of schools and other buildings.
Online Access
Free
Resource Link
Less detail

UK Experience of the Use of Timber as a Low Embodied Carbon Structural Material

https://research.thinkwood.com/en/permalink/catalogue2140
Year of Publication
2014
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems