Skip header and navigation

3 records – page 1 of 1.

Contribution of Cross Laminated Timber Panels to Room Fires

https://research.thinkwood.com/en/permalink/catalogue306
Year of Publication
2013
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
McGregor, Cameron
Organization
Carleton University
Year of Publication
2013
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Charring Rate
Polyurethane
Heat Release Rate
Room Fire
Research Status
Complete
Summary
This thesis describes a series of 5 tests that were conducted at Carleton University Fire Research Laboratory to assess the contribution of Cross Laminated Timber (CLT) panels to the development, duration and intensity of room fires. The tests were conducted in rooms constructed from 105 mm thick 3-Ply CLT panels and measured 3.5m wide by 4.5 m long by 2.5 m high. Propane and furniture fires were used with the CLT panels in protected and unprotected configurations. Data was collected on Heat Release Rate (HRR), room temperatures and charring rates. In protected configurations, no noticeable contribution was observed from the CLT panels, however in unprotected configurations, the CLT panels contributed to the fire load and increased fire growth rates and energy release rates. When charring advanced to the interface between the CLT layers, the polyurethane based adhesive failed resulting in delamination. Delaminated members contributed to the fire load and exposed uncharred timber which increased the intensity and duration of the fire. When delamination occurred, the fire in unprotected rooms continued to burn at high intensity well after the combustible contents in the room were consumed by the fire. These fires were extinguished as they could have resulted in structural failure of the test rooms.
Online Access
Free
Resource Link
Less detail

Experimental study of compartment fire development and ejected flame thermal behavior for a large-scale light timber frame construction

https://research.thinkwood.com/en/permalink/catalogue3048
Year of Publication
2021
Topic
Fire
Author
Zhang, Yuchun
Yang, Xiaolong
Luo, Yueyang
Gao, Yunji
Liu, Haiyan
Li, Tao
Organization
Southwest Jiaotong University
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Topic
Fire
Keywords
Light Timber Frame Construction
Room Fire Development
Ejected Flame
Research Status
Complete
Series
Case Studies in Thermal Engineering
Summary
Most of the previous work focused on fire behavior of non-combustible construction. However, few investigations have systematically addressed fire development and window ejected flame based on large-scale light timber frame construction (LTFC). This paper conducted a large-scale natural fire experiment to explore the fire development of wooden buildings and the ejected flame behavior by a two-layer light timber frame construction (LTFC). The experimental LTFC included two compartments, with four façade walls consisted of external and internal linings, within 5.1 m height, 3.6 m long and 2.4 m width, and weight of 1480.1 kg. The room temperature, mass variation in burning, radical temperature profiles outside the openings-façade wall, and ejected flame dimension were measured and analyzed. The results were summarized as follows: In LTFC, the room temperature and heat release rate (HRR) would show a second rapid rise, as if “twice flashover” occurred in fully burning stage. This phenomenon is obviously different from the traditional compartment fire development of buildings. Besides, after flashover, the ejected flame height continuously increased until the fire turned into decay stage, whereas the horizontal ejection distance would maintain a steady stage and increased as the openings broken extremely. Furthermore, the region outside the openings façade wall could be divided into three regions, ejected flame region (including continuous and intermittent flame) (Tr > 180 °C), buoyant plume region(150 °C > Tr > 60 °C) and heated air region(60 °C > Tr > T8). A modified function was proposed to predict the temperature profile at different heights for the openings-ejected flame. The data of this paper will enhance the comprehension for fire development of timber buildings and provide some useful information to assess the thermal behavior of window-ejected flame of façade wall.
Online Access
Free
Resource Link
Less detail

Fire Resistance of Partially Protected Cross-Laminated Timber Rooms

https://research.thinkwood.com/en/permalink/catalogue322
Year of Publication
2015
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Author
Hevia, Alejandro
Organization
Carleton University
Year of Publication
2015
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Topic
Fire
Keywords
Charring Rate
Fire Behaviour
Panels
Heat Transfer Model
Room Fire
Heat Release Rate
Temperature
Gypsum
Research Status
Complete
Summary
This thesis studies the fire behaviour of Cross Laminated Timber (CLT) panels in partially protected rooms. A one-dimensional heat transfer model was developed to determine the fire resistance of CLT floor and wall panels. During this study, three room fire tests were conducted at Carleton University Fire Research Laboratory to determine the maximum percentage of unprotected CLT surface area that will yield similar results to that of a fully protected room. The rooms had a single opening and were constructed entirely using 3-ply, 105 mm thick CLT panels. A non-standard, parametric fire using furniture and clothing as fuel was used and 2 layers of gypsum board were used to cover the ceiling and the protected walls. The Heat Release Rate, temperature, charring rate and gypsum falloff time of each test was collected. The results obtained from the room test were then compared to the numerical heat transfer model to evaluate its accuracy.
Online Access
Free
Resource Link
Less detail