In this study, the duration-of-load (DOL) effect on the rolling shear strength of cross laminated timber (CLT) was evaluated. A stress-based damage accumulation model is chosen to evaluate the DOL effect on the rolling shear strength of CLT. This model incorporates the established short-term rolling shear strength of material and predicts the time to failure under arbitrary loading history. The model was calibrated and verified based on the test data from low cycle trapezoidal fatigue tests (the damage accumulation tests). The long-term rolling shear behaviour of CLT can then be evaluated from this verified model. As the developed damage accumulation model is a probabilistic model, it can be incorporated into a time-reliability study. Therefore, a reliability assessment of the CLT products was performed considering short-term and snow loading cases. The reliability analysis results and factors reflecting the DOL effect on the rolling shear strength of CLT are compared and discussed. The results suggest that the DOL rolling shear strength adjustment factor for CLT is more severe than the general DOL adjustment factor for lumber; and, this difference should be considered in the introduction of CLT into the building codes for engineered wood design.
The design and application of cross laminated timber (CLT) is s trongly influenced by rolling shear properties of cross layers. Hence, predicting the mechanical behaviour of CLT requires accurate information about its rolling shear properties. In this st...
This paper presents a study on evaluating rolling shear (RS) strength properties of cross laminated timber (CLT) using torsional shear tests and bending tests. The CLT plates were manufactured with Spruce-Pine-Fir boards and glued with polyurethane adhes...
The presented work examines the rolling shear properties of beech wood for the novel application as cross-layers in hybrid cross-laminated timber. Rolling shear modulus and strength of beech were determined by three different approaches: i) two-plate shear tests on single beech board slabs, and ii) compression shear and iii) bending...
Rolling shear (RS) strength may govern load carrying capacity of cross laminated timber (CLT) subjected to high out-of-plane loading because high RS stresses may be induced in cross layers and wood typically has low RS strength. This study investigates RS strength properties of none-edge-glued CLT via experimental testing (short-span bending tests and modified planar shear tests) and numerical modelling. CLT specimens with different manufacturing parameters including two timber species (New Zealand grown Douglas-fir and Radiata pine), three lamination thickness (20 mm, 35 mm, and 45 mm) and various lamination aspect ratios (4.1~9.8) were studied. The lamination aspect ratio was found to have a substantial impact on RS strength of CLT. Higher aspect ratios led to a significant increase of RS strength and an approximately linear relationship could be established. With similar lamination aspect ratios, the Radiata pine CLT had higher RS strength than the Douglas-fir CLT. The two different test methods, however, yielded comparable RS strength assessments. Numerical models were further developed to study the influence of the test configurations and gaps in the cross layers on stress distributions in the cross layers. It was also found the compressive stresses perpendicular to grain in cross layers had negligible influence on the RS strength evaluations.