Skip header and navigation

36 records – page 1 of 4.

Bending and Rolling Shear Capacities of Southern Pine Cross Laminated Timber (CLT)

https://research.thinkwood.com/en/permalink/catalogue1596
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Gu, Mengzhe
Pang, Weichiang
Stoner, Michael
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Southern Pine
US
Manufacturing
Rolling Shear
Bending
Three Point Bending Test
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1899-1906
Summary
Southern Pine (SP) is one of the fastest growing softwood species in the Southern Forest of United States. With its high strength to weight ratio, SP becomes an ideal candidate for manufacturing engineered wood products such as cross laminated timber (CLT). Two batches of CLT panels were manufactured using visually graded SP lumbers in this study: pilot-scale panels in a laboratory setting and full-size panels in a manufacturing plant environment. The first batch of pilot-scale CLT panels was manufactured at Clemson University. The second batch of full-scale CLT panels (3m x 12.2m) was produced and CNC-sized by Structurlam in Penticton, Canada and shipped to Clemson University for testing. Four types of structural wood adhesives were selected in the panel production, namely Melamine Formaldehyde (MF), Phenol Resorcinol Formaldehyde (PRF), Polyurethane (PUR) and Emulsion Polymer Isocyanate (EPI). This paper presents the manufacturing process of SP CLT in a laboratory setting as well as structural performance verification of 3- ply SP CLT in terms of rolling shear and bending properties. The obtained performance data of 3-ply CLT in both major and minor strength directions is verified against PRG-320 Standard for Performance Rated Cross Laminated Timber. Tested results are presented and discussed.
Online Access
Free
Resource Link
Less detail

Bending and Rolling Shear Properties of Cross-Laminated Timber Fabricated with Canadian Hemlock

https://research.thinkwood.com/en/permalink/catalogue2407
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Wood Building Systems

Case Study: An 18 Storey Tall Mass Timber Hybrid Student Residence at the University of British Columbia, Vancouver

https://research.thinkwood.com/en/permalink/catalogue2120
Year of Publication
2016
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Fast, Paul
Gafner, Bernhard
Jackson, Robert
Li, Jimmy
Year of Publication
2016
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Tall Wood
Mass Timber
Rolling Shear
Prefabrication
Damping
Tolerances
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
This article outlines the structural design approach used for the Brock Commons Student Residence project, an 18-storey wood building at the University of British Columbia in Vancouver, Canada. When completed in summer 2017, it will be the tallest mass timber hybrid building in the world at 53 meters high. Fast + Epp are the structural engineers, working in conjunction with Acton Ostry Architects and Hermann Kaufmann Architekten. Total project costs, inclusive of fees, permits etc. are $51.5M CAD.
Online Access
Free
Resource Link
Less detail

Cross Laminated Timber (CLT) Plane Structures Under Concentrated Loading from Point Supports - Shear Design including Reinforcements

https://research.thinkwood.com/en/permalink/catalogue1572
Year of Publication
2011
Topic
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Mestek, Peter
Organization
Technical University of Munich
Year of Publication
2011
Country of Publication
Germany
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Mechanical Properties
Keywords
Point-Supported
Concentrated Loads
Shear
Rolling Shear
Reinforcement
Screws
Biaxial
Language
German
Research Status
Complete
Summary
This thesis deals with the shear design of Cross Laminated Timber (CLT) elements stressed by concentrated loads which are locally reinforced by means of self-tapping screws with continuous threads. A simplified model is presented using an effective width for the calculation of the shear stresses in the vicinity of point supports or concentrated loads. Laboratory tests supply material-mechanical principles to determine the interaction of rolling shear stresses and compression perpendicular to the grain. In addition to experimental tests theoretical models are developed to examine the load bearing behaviour of CLT-elements reinforced by self-tapping screws. Preliminary tests with plate elements provide initial experience with these reinforcements under biaxial load transfer. Finally a design concept validated by means of the test results is proposed.
Online Access
Free
Resource Link
Less detail

Curved Cross Laminated Timber Elements

https://research.thinkwood.com/en/permalink/catalogue1545
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Stecher, Georg
Maderebner, Roland
Zingerle, Philipp
Flach, Michael
Kraler, Anton
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Rolling Shear
Tensile Stress
Strength
Rigidity
Density
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1131-1138
Summary
In timber construction, curved timber components have been used repeatedly. Yet the use of curved CLT elements is a relatively recent phenomenon. To obtain a European Technical Approval (ETA) for so-called radius timber (single curved CLT elements), Holzbau Unterrainer GmbH commissioned the accredited testing institution TVFA – Innsbruck to carry out the tests required for this purpose. To this end, overall 158 tests were performed in building component dimensions from December 2013 to May 2014, and several laboratory tests were carried out to monitor adhesive joint quality. Due to the single curved shape of radius timber elements, it is key to particularly focus on possible implications on load bearing capacity due to pre-stress of the slats and to the tensile stress perpendicular to grain resulting from deflection forces. To comply with the criteria laid down in the semi-probabilistic safety concept used in Eurocode 5, the impact caused by these pre-curvatures on strength, rigidity and gross density must be known.
Online Access
Free
Resource Link
Less detail

Design Concept for CLT - Reinforced with Self-Tapping Screws

https://research.thinkwood.com/en/permalink/catalogue1486
Year of Publication
2014
Topic
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Mestek, Peter
Dietsch, Philipp
Organization
Technical University of Munich
Year of Publication
2014
Country of Publication
Germany
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Design and Systems
Keywords
Self-Tapping Screws
Shear Stress
Rolling Shear Stress
Language
English
Research Status
Complete
Summary
Concentrated loads on Cross Laminated Timber elements (CLT) in areas of point supports or load applications cause high local shear stresses. Inclined self-tapping screws with continuous threads have turned out to be an effective reinforcement. As neither the German design standard DIN 1052 [2] nor technical approvals cover this construction method a research project funded by the AiF [3] was conducted to gather basic information for its application. These basics include the determination of shear stresses next to concentrated loads, the interaction of compression perpendicular to the grain and rolling shear stresses as well as theoretical and experimental examinations of the load bearing behaviour of reinforced CLT-elements. This paper presents the main research results. A design concept validated by means of the test results is proposed [4].
Online Access
Free
Resource Link
Less detail

Development of Evaluation Methodology for Rolling Shear Properties in Cross Laminated Timber (CLT)

https://research.thinkwood.com/en/permalink/catalogue137
Year of Publication
2013
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Beams
Author
Zhou, Qinyi
Organization
University of New Brunswick
Year of Publication
2013
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Span-to-Depth
Rolling Shear Modulus
Two-plate shear test
Load Carrying Capacity
Language
English
Research Status
Complete
Summary
The rolling shear modulus is very low, leading to rolling shear failure in the cross layer of cross-laminated timber (CLT). The overall objective of this thesis work was to develop an appropriate methodology for measuring the rolling shear properties of CL T. This research consists of three article format chapters, which were aimed at: 1) obtaining a better understanding of advantages and disadvantages of using the bending test and twoplate shear test for determining the rolling shear properties of 3-layer CLT, 2) investigating the influence of growth ring orientation and laminates thickness of cross layer on the rolling shear properties, and 3) verifying the feasibility of two-plate shear test method for measuring the rolling shear properties of 3-layer CL T beam. It is recommended that the two-plate shear test be used as a testing method for measuring the rolling shear modulus of a cross layer, which can be used to calculate the deflection of a 3-layer CLT beam using the shear analogy method at a given span-to-depth ratio ranging from 6 to 50. An adjustment factor (a) was proposed to predict the deflection under the centre-point bending test at various span-to-depth ratios. The two-plate shear test method can also be used to measure the rolling shear strength, and can provide a reasonable estimate of the load-carrying capacity of 3-layer CLT beam at a relatively large span-to-depth ratio, but a conservative estimate at a small span-to-depth ratio. In summary, it shall be feasible to adopt the two-plate shear test for determining the rolling shear modulus and strength of cross layer in CLT.
Online Access
Free
Resource Link
Less detail

Duration-Of-Load and Size Effects on the Rolling Shear Strength of Cross Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue191
Year of Publication
2015
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Li, Yuan
Organization
University of British Columbia
Year of Publication
2015
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Long-term
Mountain Pine Beetle
Short-term
Duration of Load
Rolling Shear Strength
Torque Loading Tests
Language
English
Research Status
Complete
Summary
In this study, the duration-of-load and size effects on the rolling shear strength of CLT manufactured from MPB-afflicted lumber were evaluated. The study of the duration-of-load effect on the strength properties of wood products is typically challenging; and, additional complexity exists with the duration-of-load effect on the rolling shear strength of CLT, given the necessary consideration of crosswise layups of wood boards, existing gaps and glue bonding between layers. In this research, short-term ramp loading tests and long-term trapezoidal fatigue loading tests (damage accumulation tests) were used to study the duration-of-load behaviour of the rolling shear strength of CLT. In the ramp loading test, three-layer CLT products showed a relatively lower rolling shear load-carrying capacity. Torque loading tests on CLT tubes were also performed. The finite element method was adopted to simulate the structural behaviour of CLT specimens. Evaluation of the rolling shear strength based on test data was discussed. The size effect on the rolling shear strength was investigated. The results suggest that the rolling shear duration-of-load strength adjustment factor for CLT is more severe than the general duration-ofload adjustment factor for lumber, and this difference should be considered in the introduction of CLT into the building codes for engineered wood design.
Online Access
Free
Resource Link
Less detail

Duration-Of-Load Effect on the Rolling Shear Strength of Cross Laminated Timber: Duration-Of-Load Tests and Damage Accumulation Model

https://research.thinkwood.com/en/permalink/catalogue228
Year of Publication
2015
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Li, Yuan
Lam, Frank
Organization
University of British Columbia
Year of Publication
2015
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Duration of Load
Long-term
Mountain Pine Beetle
Rolling Shear Strength
Stiffness
Strength
Stress Distribution
Language
English
Research Status
Complete
Summary
In this study, the duration-of-load (DOL) effect on the rolling shear strength of cross laminated timber (CLT) was evaluated. A stress-based damage accumulation model is chosen to evaluate the DOL effect on the rolling shear strength of CLT. This model incorporates the established short-term rolling shear strength of material and predicts the time to failure under arbitrary loading history. The model was calibrated and verified based on the test data from low cycle trapezoidal fatigue tests (the damage accumulation tests). The long-term rolling shear behaviour of CLT can then be evaluated from this verified model. As the developed damage accumulation model is a probabilistic model, it can be incorporated into a time-reliability study. Therefore, a reliability assessment of the CLT products was performed considering short-term and snow loading cases. The reliability analysis results and factors reflecting the DOL effect on the rolling shear strength of CLT are compared and discussed. The results suggest that the DOL rolling shear strength adjustment factor for CLT is more severe than the general DOL adjustment factor for lumber; and, this difference should be considered in the introduction of CLT into the building codes for engineered wood design.
Online Access
Free
Resource Link
Less detail

Effect of Growth Ring Orientation on the Rolling Shear Properties of Wooden Cross Layer Under Two-Plate Shear Test

https://research.thinkwood.com/en/permalink/catalogue635
Year of Publication
2014
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Zhou, Qinyi
Gong, Meng
Chui, Ying Hei
Mohammad, Mohammad
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Growth Ring Orientation
Rolling Shear Modulus
Rolling Shear Strength
Spruce
Two-plate shear test
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The design and application of cross laminated timber (CLT) is s trongly influenced by rolling shear properties of cross layers. Hence, predicting the mechanical behaviour of CLT requires accurate information about its rolling shear properties. In this study, black spruce wood laminates with three different growth ring orientations (flat sawn, in-between, quarter sawn) were edge glued to produce wooden cross layer (WCL). Two-plate shear tests were carried out on WCL to investigate the influence of growth ring orientation on the rolling shear properties. The experimental results showed that the growth ring orientation had a significant effect on rolling shear modulus of WCL, however, almost no effect on the rolling shear strength. The WCL of in-between end grain had the maximum rolling shear modulus of 89MPa and rolling sh ear strength of 2.13 MPa.
Online Access
Free
Resource Link
Less detail

36 records – page 1 of 4.