Openings are usually required to allow services like plumbing, sewage pipes and electrical
wiring to run through beams. This prevents an extra depth of the floor/ceiling, while preserving architectural considerations. The introduction of large opening causes additional tension perpendicular to grain in timber beams. The low tensile strength perpendicular to grain of wood allows crack formation. Crack propagation around the hole considerably decreases the load-carrying capacity of the beam. However, in most cases, crack formation and propagation around
the hole can be prevented by the use of an appropriate reinforcement. Screw, glued-in rods, and plywood are alternative options for the reinforcement. Design of the reinforcement requires that the working mechanism of the reinforcement is fully understood and properly addressed. In addition, reinforcement should be designed for actions produced in the section of the beam weakened by the hole. The current paper uses a simple truss model around the opening to calculate the tensile force in the reinforcement. Two simple formulations for design of the reinforcement are derived and compared with numerical and experimental results, showing an overall good correspondence. The proposed truss model can be considered for incorporation in future codes of practice.
Glued-in rods (GiR) are an effective way to connect timber elements from both load bearing capacity/stiffness and aesthetic point of view. This method is also widely accepted as a method for reinforcement of the new and existing timber structures. Although GiR are widely used in timber structures, there is still no unified European test standards, product standards or design equations for such connections. At present, there are several test methods and procedures applied in research and development. In this paper two different methods for obtaining pull-out strength are presented. Furthermore, experimental investigation was conducted and results obtained from both methods are mutually compared. Pull – compression test procedure is the most common setup for experimental investigation, however this setup is sometimes not representative and it is often characterized as unreliable because it does not quite good correspond to practical applications. The second examined test procedure was pull-pull. Within the experimental investigation, total number of 36 specimens were tested and results obtained from both methods are shown, discussed and compared in this paper.
This paper describes the test program of glued-in deformed bar timber joint conducted in pull-pull configuration, which aims to investigate the bond behavior of glued-in deformed bar systems in glulam. The varying parameter are bar slenderness ratio and glue-line thickness. In order to obtain the bond stress distribution along the anchorage length, special deformed bar with strain gauges attached internally were designed. Test results show that both the bar slenderness ratio and glue-line thickness have obvious influence on withdrawal strength and bond behavior of glued-in deformed bar joint. Failure modes of specimens are also analyzed in this paper. Ductile failure modes of glued-in rod timber joint could be realized with reasonable design.
Glued-in-rods (GiR) represent a class of joints being used in timber engineering that are mostly used to transfer axial loads in structural members with Glass Fibre Reinforced Polymers (G-FRP) increasingly being considered as rod material. The primary objective of the research presented herein was to apply a probabilistic capacity prediction method to timber joints with G-FRP GiR. The experimental campaign was specific in two ways: firstly, G-FRP rods were bonded into both ends of the timber block with both ends being tested to failure; and secondly, as opposed to most previous studies exhibiting stiff adhesives, a ductile Polyurethane with markedly non-linear behaviour was used. All material characterisation was performed with methods that can be reproduced by any standard laboratory equipment, to provide parameters for the subsequent numerical analyses. Based thereupon, a probabilistic method was used and provided reasonably accurate predictions of the joint capacities of 25 different geometrical GiR configurations. The probabilistic method was extended for realistic estimations of the experimental capacity scattering in form of upper and lower quantiles.
In this paper, the performance improvement of glulam post-to-beam connections reinforced by plain round rods (PRRs) and self-tapping screws (STSs) were compared. Five non-reinforced post-to-beam bolted connections, five PRR-reinforcing connections and five STS-reinforcing connections were experimentally investigated under monotonic and low frequency cyclic loading. Their stiffness, ductility, moment resistance capacity, failure modes and seismic behavior were analyzed. The findings indicated that both of these two reinforcements could mitigate wood splitting, and change the failure mode from brittle failure to ductile failure. The maximum moment and failure rotation of PRR-reinforcing connection were increased by 29% and 6% respectively, compared with those of non-reinforced connection. In addition, those of STS-reinforcing connection increased by 86% and 145% respectively. Furthermore, the comparison of PRR-reinforcing and STS-reinforcing connections indicated that the connection ductility reinforced by self-tapping screws enhanced more significantly; 106% higher than that of PRR-reinforcing connection. Moreover, under the low frequency cyclic loading, PRR-reinforcing and STS-reinforcing connections dissipated more energy (336% and 641% respectively) with a lower stiffness degeneration rate and a higher equivalent viscous damping ratio than those of non-reinforced connection. Besides, the dissipation energy and equivalent viscous damping ratio of STS-reinforcing connection were larger than those of PRR-reinforcing connection.
The application of cross-laminated timber (CLT) as floor panels is limited by excessive deflection and vibration. A composite system combining CLT and ultra high-performance fibre-reinforced concrete (UHPFRC) was developed to extend span limits. Push-off tests were conducted on different connectors, and a glued-in rod connector was chosen and further refined for the proposed system. Static bending tests and free vibration tests were conducted on bare CLT panels and two composite specimens. By comparing the results, it is concluded that the proposed system considerably extend the span limits of CLT panels.
Building owners often state requirements that new buildings shall have open and flexible architecture in order to allow flexible use and future changes. A way to improve timber buildings in that direction is to increase the stiffness of the connections between horizontal and vertical members of the structural systems. This paper presents some numerical and analytical considerations with respect to the stiffness requirements for moment resisting timber connections. It also presents experimental tests and results for a moment resisting connection with inclined threaded rods installed in predrilled holes.
This paper presents an experimental campaign conducted on the beam-to-column glulam joints combing glued-in rods and steel brackets (BCGS glulam joints) aiming to investigate the mechanical behaviour of these glulam joints under low cyclic loading. Three types of steel brackets were designed for connecting the beam and column combing with glued-in rods and to work as energy dissipaters. In each group of specimens (except for group MJ4), two specimens were tested under monotonic loading and the others were subjected to low cyclic loading. The test results were summarized comprehensively in terms of failure modes, joint stiffness, hysteresis loops, ductility and energy dissipation ability. Generally, the difference of load capacity between BCGS glulam joints and the beam-to-column glulam joints only with glued-in rods (BCG glulam joints) was not significant. The joint stiffness of BCG glulam joints was higher than that of the BCGS glulam joints, while the stiffness degradation of the later is slower than the former. The hysteresis loops of the BCGS glulam joints exhibited less pinching effect obviously compared with the BCG glulam joints, which indicated that the energy dissipation ability of the glulam joints with glued-in rods could be improved significantly by using the steel brackets as energy dissipaters. Moreover, it should be noted that the hysteresis loops of groups CJ1 showed slipping effect obviously during testing. This might due to the insufficient shear resistance of these two groups, so that further investigations on BCG glulam joints with shear-resisting components are urgently needed.
Timber has been used for building construction for centuries, until the industrial revolution, when it was often replaced by steel and concrete or confined to low-rise housings. In the last thirty years however, thanks to the development of mass timber products and new global interest in sustainability, timber has begun to make a resurgence in the building industry. As building codes and public perception continues to change, the demand for taller and higher-performance timber buildings will only grow. Thus, a need exists for new construction technology appropriate for taller mass timber construction, as well as for fabrication and deconstruction practices that respect wood’s inherent sustainable nature. With this in mind, this research program aims to develop a new hybrid shear connection for mass timber buildings that allows for easy construction, deconstruction, and reuse of the structural elements.
This report includes results of Phase 1, which focused on connections consisting of partially threaded 20M and 24M steel rods bonded into pockets formed in CLT and surrounded by thick crowns of high-strength three-component epoxy-based grout. A total of 168 specimens were designed and fabricated, and push-out shear tests carried out with a displacement-controlled monotonic loading protocol. Strength and stiffness values were assessed and effective failure modes in specimens identified. These latter, along with the recorded load-deformation curves, indicate that it is possible to develop mechanics-based design models and design formulas akin to those already used for typical dowel-type fastener timber connections. Additionally, the specimens were easily fabricated in the lab and quickly fastened to the test jig by means of nuts and washers, suggested such connections have a strong potential for prefabrication, disassembly, and reuse.