Skip header and navigation

12 records – page 1 of 2.

Advancing Tall Mass Timber Buildings through Seismic Resilience Testing

https://research.thinkwood.com/en/permalink/catalogue2584
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Wood Building Systems
Cores
Organization
University of Nevada
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Wood Building Systems
Cores
Topic
Seismic
Keywords
Rocking Walls
Shake Table Test
Mass Timber
Non-structural Components and Systems
Research Status
In Progress
Notes
Project contact is Keri Ryan at University of Nevada, Reno
Summary
A landmark shake table test of a 10-story mass timber building will be conducted in late 2020. The test program, funded by other sources, will help accelerate the adoption of economically competitive tall timber buildings by validating the seismic performance of a resilient cross-laminated timber (CLT) rocking wall system. In this project, we leverage and extend the test program by including critical nonstructural components and systems (NCS). Including NCSs, which are most vulnerable to rocking induced deformations of the CLT core, allows investigation of the ramification of this emerging structural type on building resiliency. Quantifying interactions amongst vertically and horizontally spanning NCSs during earthquake shaking will allow designers to develop rational design strategies for future installation of such systems. The expected research outcomes are to expand knowledge of rocking wall system interactions with various NCS, identify NCS vulnerabilities in tall timber buildings, and develop solutions to address these vulnerabilities. Moreover, this effort will greatly increase visibility of the test program. The results of this research will be widely disseminated to timber design and NCS communities through conference presentations, online webinars, and distribution to publicly accessible research repositories. 
Less detail

Construction and Seismic Testing of a Resilient Two-Story Mass Timber Structure with Cross Laminated Rocking Walls

https://research.thinkwood.com/en/permalink/catalogue2223
Year of Publication
2018
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Griesenauer, Daniel
Organization
Colorado School of Mines
Year of Publication
2018
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Full Scale
Shake Table Test
Rocking Walls
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber Engineering: Improvement and Application

https://research.thinkwood.com/en/permalink/catalogue1366
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Cross Laminated Timber Shear Wall Connections for Seismic Applications

https://research.thinkwood.com/en/permalink/catalogue2405
Year of Publication
2020
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Falk, Michael
Publisher
Kansas State University
Year of Publication
2020
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Connections
Seismic
Keywords
Panels
Earthquake
Rocking Walls
Shear Walls
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Cross Laminated Timber Shear Wall Connections for Seismic Applications

https://research.thinkwood.com/en/permalink/catalogue2406
Year of Publication
2020
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Falk, Michael
Publisher
Kansas State University
Year of Publication
2020
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Connections
Seismic
Keywords
Panels
Earthquake
Rocking Walls
Shear Walls
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Development and Full-Scale Validation of Resilience-Based Seismic Design of Tall Wood Buildings: The NHERI Tallwood Project

https://research.thinkwood.com/en/permalink/catalogue1477
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Pei, Shiling
van de Lindt, John
Ricles, James
Sause, Richard
Berman, Jeffrey
Ryan, Keri
Dolan, Daniel
Buchanan, Andrew
Robinson, Thomas
McDonnell, Eric
Blomgren, Hans-Erik
Popovski, Marjan
Rammer, Douglas
Year of Publication
2017
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Tall Wood
Post-Tensioned
Rocking Walls
Resilience-Based Seismic Design
Shaking Table Test
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
With global urbanization trends, the demands for tall residential and mixed-use buildings in the range of 8~20 stories are increasing. One new structural system in this height range are tall wood buildings which have been built in select locations around the world...
Online Access
Free
Resource Link
Less detail

Executive Report: Full-Scale Shake Table Testing of a Two-Story Mass Timber Building with Resilient Rocking Wall Lateral System

https://research.thinkwood.com/en/permalink/catalogue1151
Year of Publication
2017
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Wood Building Systems

Experimental Test of Cross Laminated Timber Connections Under Bi-Directional Loading

https://research.thinkwood.com/en/permalink/catalogue1551
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Shear Walls
Author
Liu, Jingjing
Lam, Frank
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Shear Walls
Topic
Mechanical Properties
Keywords
Shear
Tension
Angle Bracket
Hold-Down
Monotonic Tests
Cyclic Tests
Rocking Walls
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1223-1232
Summary
This paper presents results of an experimental study of commonly used angle bracket and hold-down connections in Cross Laminated Timber (CLT) wall systems under bi-directional loading. Monotonic and cyclic tests of the connections were carried out in one direction, while different levels of constant force were simultaneously applied in...
Online Access
Free
Resource Link
Less detail

Impact of Moisture on Post-tensioned Rocking Walls

https://research.thinkwood.com/en/permalink/catalogue2274
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Walls
Organization
TallWood Design Institute
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Moisture
Keywords
Seismic
Moisture
Rocking Walls
Research Status
In Progress
Notes
Project contact is Andre Barbosa.
Summary
Resilient structures are buildings designed not only to protect life safety in a seismic event but also to preserve the structural integrity of the major components of the buildings so that they can be reoccupied quickly and at minimal cost. An example is a CLT rocking wall system, utilizing post-tensioned cables and energy dissipating-connectors, which is being used for the first time in North America in OSU’s new Peavy Hall. CLT rocking walls borrow from concepts used in concrete and steel structures that were later adapted to LVL building systems in New Zealand. This project will examine the impacts of wetting at the base of the wall on the structural capacity and cyclic performance of the system. Identical rocking wall systems will undergo structural testing, with one being subjected to simulated moisture intrusion that may occur during construction. The findings will provide important information that can be later implemented in design and construction guidelines.
Less detail

Innovative Lateral Systems for Mass Timber

https://research.thinkwood.com/en/permalink/catalogue2793
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Shear Walls
Organization
TallWood Design Institute
Oregon State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Shear Walls
Topic
Seismic
Keywords
Post-Tensioned
Rocking Walls
Energy Dissipation
Mass Plywood
Experimental Tests
Seismic Force Resisting System
Research Status
In Progress
Notes
Project contacts are Arijit Sinha, Andre Barbosa and Barbara Simpson at Oregon State University
Summary
The results of this proposal will provide guidance on efficient design and analysis strategies for wood building construction including rocking/post-tensioned and pivoting spines, a next-generation seismic force resisting system, for improved performance, safety, sustainability, and economy. The use of wood in tall buildings is limitied by strength and stiffness considerations. The use of CLT and MPP shear walls, supplemented by energy dissipators may be able to aleviate this problem. Several knowledge gaps exist in terms of the performance of mass timber lateral force resisting systems (LFRS), interconnectivity and compatibility between the modules and LFRS-to-gravity system, and potential hybridization of structural materials for the gravity system and LFRS. The recent 2017 two-story shake table test is the only full scale dynamic on rocking CLT LFRS with energy dissipators. Importantly, since MPP panels are also a recent addition in the mass timber industry, no experimental data exist regarding the self-centering performance of post-tensioned MPP wall panels.
Resource Link
Less detail

12 records – page 1 of 2.