Skip header and navigation

18 records – page 1 of 2.

Advancing Tall Mass Timber Buildings through Seismic Resilience Testing

https://research.thinkwood.com/en/permalink/catalogue2584
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Wood Building Systems
Cores
Organization
University of Nevada
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Wood Building Systems
Cores
Topic
Seismic
Keywords
Rocking Walls
Shake Table Test
Mass Timber
Non-structural Components and Systems
Research Status
In Progress
Notes
Project contact is Keri Ryan at University of Nevada, Reno
Summary
A landmark shake table test of a 10-story mass timber building will be conducted in late 2020. The test program, funded by other sources, will help accelerate the adoption of economically competitive tall timber buildings by validating the seismic performance of a resilient cross-laminated timber (CLT) rocking wall system. In this project, we leverage and extend the test program by including critical nonstructural components and systems (NCS). Including NCSs, which are most vulnerable to rocking induced deformations of the CLT core, allows investigation of the ramification of this emerging structural type on building resiliency. Quantifying interactions amongst vertically and horizontally spanning NCSs during earthquake shaking will allow designers to develop rational design strategies for future installation of such systems. The expected research outcomes are to expand knowledge of rocking wall system interactions with various NCS, identify NCS vulnerabilities in tall timber buildings, and develop solutions to address these vulnerabilities. Moreover, this effort will greatly increase visibility of the test program. The results of this research will be widely disseminated to timber design and NCS communities through conference presentations, online webinars, and distribution to publicly accessible research repositories. 
Less detail

Construction and Seismic Testing of a Resilient Two-Story Mass Timber Structure with Cross Laminated Rocking Walls

https://research.thinkwood.com/en/permalink/catalogue2223
Year of Publication
2018
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Griesenauer, Daniel
Organization
Colorado School of Mines
Year of Publication
2018
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Full Scale
Shake Table Test
Rocking Walls
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Controlled Rocking Cross-Laminated Timber Walls for Regions of Low-to-Moderate Seismicity

https://research.thinkwood.com/en/permalink/catalogue1726
Year of Publication
2016
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Kovacs, Mike
Wiebe, Lydell
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Seismic
Keywords
North America
Canada
Nonlinear Time History Analysis
Prototype
Controlled Rocking Heavy Timber Walls
Drifts
Energy Dissipation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4671-4680
Summary
Controlled rocking heavy timber walls (CRHTW) were originally developed in New Zealand as a low-damage seismic force resisting system using Laminated Veneer Lumber (LVL). This paper examines one way of adapting them to regions of low-to-moderate seismicity in North America, using Cross-Laminated Timber (CLT) composed of...
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber Engineering: Improvement and Application

https://research.thinkwood.com/en/permalink/catalogue1366
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Kramer, Anthonie
Organization
Oregon State University
Year of Publication
2014
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Poplar
Energy Dissipation
Rocking Walls
Language
English
Research Status
Complete
Summary
The development of cross-laminated timber (CLT) panel technology has opened up new opportunities for wood in tall buildings. Several characteristics including seismic performance and speed of construction have raised interest among designers. As CLT gains acceptance in the industry, alternative structural solutions need to be investigated to improve performance of CLT as a building material. The first study presented is an assessment of the viability of hybrid poplar for use in CLT panels. Hybrid poplar is a low density species, which is not typically considered for structural applications. Low density species have the potential to improve the structural efficiency of CLT panels. The tests conducted are based on the qualification of panels outlined in the ANSI/APA PRG-320: Standard for Performance-Rated Cross-Laminated Timber to determine the structural viability of the CLT panels. The second study presented is an investigation of a new alternative energy dissipation solution to be used with cross-laminated timber rocking walls for seismic design. The energy dissipators are designed as a structural fuse which can be easily replaced after failure following a large seismic event. The results of this study give insight to alternative solutions for CLT to improve upon current applications.
Online Access
Free
Resource Link
Less detail

Cross Laminated Timber Shear Wall Connections for Seismic Applications

https://research.thinkwood.com/en/permalink/catalogue2405
Year of Publication
2020
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Falk, Michael
Publisher
Kansas State University
Year of Publication
2020
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Connections
Seismic
Keywords
Panels
Earthquake
Rocking Walls
Shear Walls
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Cross Laminated Timber Shear Wall Connections for Seismic Applications

https://research.thinkwood.com/en/permalink/catalogue2406
Year of Publication
2020
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Falk, Michael
Publisher
Kansas State University
Year of Publication
2020
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Connections
Seismic
Keywords
Panels
Earthquake
Rocking Walls
Shear Walls
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Design of Controlled Rocking Heavy Timber Walls For Low-To-Moderate Seismic Hazard Regions

https://research.thinkwood.com/en/permalink/catalogue2370
Year of Publication
2016
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Kovacs, Michael
Publisher
McMaster University
Year of Publication
2016
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Seismic
Design and Systems
Keywords
Controlled Rocking
Heavy Timber
Low-to-Moderate Seismic Hazard
Post-Tensioned Timber
Force-Based Design
Non-Linear Time-History Analysis
Language
English
Research Status
Complete
Summary
The controlled rocking heavy timber wall (CRHTW) is a high-performance structural solution that was first developed in New Zealand, mainly considering Laminated Veneer Lumber (LVL), to resist high seismic loads without sustaining structural damage. The wall responds in bending and shear to small lateral loads, and it rocks on its foundation in response to large seismic loads. In previous studies, rocking has been controlled by both energy dissipation elements and post-tensioning, and the latter returns the wall to its original position after a seismic event. The controlled rocking response avoids the need for structural repair after an earthquake, allowing for more rapid return to occupancy than in conventional structures. Whereas controlled rocking walls with supplemental energy dissipation have been studied before using LVL, this thesis proposes an adapted CRHTW in which the design and construction cost and complexity are reduced for low-to-moderate seismic hazard regions by removing supplemental energy dissipation and using cross-laminated timber (CLT) because of its positive economic and environmental potential in the North American market. Moreover, whereas previous research has focussed on direct displacement-based design procedures for CRHTWs, with limited consideration of force-based design parameters, this thesis focusses on force-based design procedures that are more common in practice. A design and analysis process is outlined for the adapted CRHTW, based on a similar methodology for controlled rocking steel braced frames. The design process includes a new proposal to minimize the design forces while still controlling peak drifts, and it also includes a new proposal for predicting the influence of the higher modes by referring to previous research on the capacity design of controlled rocking steel braced frames. Also, a numerical model is outlined, including both a baseline version and a lower-bound model based on comparison to experimental data. The numerical model is used for non-linear time-history analysis of a prototype design, confirming the expected performance of the adapted CRHTW, and the model is also used for incremental dynamic analyses of three-, six-, and nine-storey prototypes, which show a low probability of collapse.
Online Access
Free
Resource Link
Less detail

Development and Full-Scale Validation of Resilience-Based Seismic Design of Tall Wood Buildings: The NHERI Tallwood Project

https://research.thinkwood.com/en/permalink/catalogue1477
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Pei, Shiling
van de Lindt, John
Ricles, James
Sause, Richard
Berman, Jeffrey
Ryan, Keri
Dolan, Daniel
Buchanan, Andrew
Robinson, Thomas
McDonnell, Eric
Blomgren, Hans-Erik
Popovski, Marjan
Rammer, Douglas
Year of Publication
2017
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Tall Wood
Post-Tensioned
Rocking Walls
Resilience-Based Seismic Design
Shaking Table Test
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
With global urbanization trends, the demands for tall residential and mixeduse buildings in the range of 8~20 stories are increasing. One new structural system in this height range are tall wood buildings which have been built in select locations around the world using a relatively new heavy timber structural material known as cross laminated timber (CLT). With its relatively light weight, there is consensus amongst the global wood seismic research and practitioner community that tall wood buildings have a substantial potential to become a key solution to building future seismically resilient cities. This paper introduces the NHERI Tallwood Project recentely funded by the U.S. National Science Fundation to develop and validate a seismic design methodology for tall wood buildings that incorporates high-performance structural and nonstructural systems and can quantitatively account for building resilience. This will be accomplished through a series of research tasks planned over a 4-year period. These tasks will include mechanistic modeling of tall wood buildings with several variants of post-tensioned rocking CLT wall systems, fragility modeling of structural and non-structural building components that affect resilience, fullscale biaxial testing of building sub-assembly systems, development of a resilience-based seismic design (RBSD) methodology, and finally a series of full-scale shaking table tests of a 10-story CLT building specimen to validate the proposed design. The project will deliver a new tall building type capable of transforming the urban building landscape by addressing urbanization demand while enhancing resilience and sustainability.
Online Access
Free
Resource Link
Less detail

Executive Report: Full-Scale Shake Table Testing of a Two-Story Mass Timber Building with Resilient Rocking Wall Lateral System

https://research.thinkwood.com/en/permalink/catalogue1151
Year of Publication
2017
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Wood Building Systems
Author
Pei, Shiling
Year of Publication
2017
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Wood Building Systems
Topic
Seismic
Design and Systems
Keywords
Full Scale
Shake Table Test
Rocking Walls
Language
English
Research Status
Complete
Summary
This report is prepared for Softwood Lumber Board (SLB) by the NHERI TallWood Project team in order to provide a brief and timely update on the progress and preliminary research findings from the NHERI TallWood Project. This report is focused on the full-scale shake table test of a two-story mass timber building conducted during the summer of 2017 at NHERI@UC San Diego outdoor shake table. The shake table test described in this report was conducted during a three-month period from June to August 2017. As the research team is still working on processing and analyzing the data obtained from the experiments, this report only discusses preliminary findings in a qualitative manner. The research team is expected to produce additional reports and publications based on the test results in the near future.
Online Access
Free
Resource Link
Less detail

Experimental Test of Cross Laminated Timber Connections Under Bi-Directional Loading

https://research.thinkwood.com/en/permalink/catalogue1551
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Shear Walls
Author
Liu, Jingjing
Lam, Frank
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Shear Walls
Topic
Mechanical Properties
Keywords
Shear
Tension
Angle Bracket
Hold-Down
Monotonic Tests
Cyclic Tests
Rocking Walls
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1223-1232
Summary
This paper presents results of an experimental study of commonly used angle bracket and hold-down connections in Cross Laminated Timber (CLT) wall systems under bi-directional loading. Monotonic and cyclic tests of the connections were carried out in one direction, while different levels of constant force were simultaneously applied in a perpendicular direction. The experiment aims to consider the combined and coupling effect of loads for connections in a rocking CLT shear wall system. Key mechanical characteristics of those connections were calculated, evaluated and discussed. The results show that shear and tension actions for hold-downs are quite independent but strongly coupled for angle brackets. The study gives a better understanding of hysteretic behaviour of CLT connections, and provides reliable data for future numerical analysis of CLT structures.
Online Access
Free
Resource Link
Less detail

18 records – page 1 of 2.