Skip header and navigation

5 records – page 1 of 1.

Assessing the Seismic Performance of Screws Used in Timber Structures by Means of Cyclic Bending Tests

https://research.thinkwood.com/en/permalink/catalogue1946
Year of Publication
2018
Topic
Connections
Seismic
Application
Walls
Floors

Experimental Investigation of Connection for the FFTT, A Timber-Steel Hybrid System

https://research.thinkwood.com/en/permalink/catalogue269
Year of Publication
2013
Topic
Connections
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Bhat, Pooja
Organization
University of British Columbia
Year of Publication
2013
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
FFTT
Quasi-Static
Monotonic Testing
Reverse Cyclic Testing
Embedment Depth
Embedment Length
Strong-column Weak-beam Failure
Cross-Section Reduction
Language
English
Research Status
Complete
Summary
This thesis fills the existing knowledge gap between detailed design and global behaviour of hybrid systems through an experimental study on an innovative timber-steel hybrid system called “FFTT”. The FFTT system relies on wall panels of mass timber such as CLT for gravity and lateral load resistance and embedded steel sections for ductility under the earthquake loads. An important step towards the practical application of the FFTT system is obtaining the proof that the connections facilitate the desired ductile failure mode. The experimental investigation was carried out at the facility of FPInnovations, Vancouver. The testing program consisted of quasi-static monotonic and reverse cyclic tests on the timber-steel hybrid system with different configurations. The two beam profiles, wide flange I-sections and hollow rectangular sections were tested. The interaction between the steel beams and CLT panels and the effect of the embedment depth, cross-section reduction and embedment length were closely examined. The study demonstrated that when using an appropriate steel section, the desired ‘Strong Column–Weak Beam’ failure mechanism was initiated and excessive wood crushing was avoided. While wide-flange I-sections were stiffer and stronger, the hollow sections displayed better post-yield behaviour with higher energy dissipation capacity through several cycles of deformation under cyclic loads. The out-of-plane buckling at the point of yielding was the major setback of the embedment of wide-flange I-sections. This research served as a precursor for providing design guidance for the FFTT system as one option for tall wood buildings in high seismic regions.
Online Access
Free
Resource Link
Less detail

Multi-Storey Continuous CLT Shear Wall Testing

https://research.thinkwood.com/en/permalink/catalogue2646
Topic
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Organization
Fast + Epp
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Seismic
Mechanical Properties
Keywords
Monotonic Test
Reverse Cyclic Test
Research Status
In Progress
Summary
To support the associated elementary school projects in pushing the boundaries forward for wood construction in seismic zones, this testing project aims to establish the seismic behaviour of two-storey continuous cross-laminated (CLT) timber shear walls in comparison to typical single-storey CLT shear walls and ensure they are able to provide necessary ductility in a seismic event. Working with the University of Northern British Columbia (UNBC), Fast + Epp aimed to complete a series of monotonic and reversed cyclic tests on CLT shear walls. The test setup was developed to determine the behaviour of these types of shear walls for the project specific application, as well as provide a basis to further develop this type of system for the engineering community. The multi-storey continuous CLT panel shear walls will allow for more efficient and cost-effective construction – reducing construction time, material handling, and the number of connectors required. The lab testing of these shear walls is complete, with data analysis underway. Results are intended to be published in 2021.
Resource Link
Less detail

Numerical and Experimental Investigations of Connection for Timber-Steel Hybrid System

https://research.thinkwood.com/en/permalink/catalogue213
Year of Publication
2014
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Azim, Riasat
Organization
University of British Columbia
Year of Publication
2014
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Design and Systems
Keywords
FFTT
Mid-Rise
Timber-Steel Hybrid
Quasi-Static
Monotonic Testing
Reverse Cyclic Testing
Language
English
Research Status
Complete
Summary
In recent years, hybrid systems have grown in popularity as potential solution for mid-rise construction. There is also an increased interest in using timber for such systems. The lack of established design guidance, however, has tabled the practical implementation of timber-based hybrid structures. The aim of this thesis is to address the existing knowledge gap regarding the detailed connection design of hybrid systems through combined experimental and numerical investigations on a novel timber-steel system called “FFTT”. The FFTT system relies on wall panels of mass timber such as Cross-Laminated-Timber (CLT) for gravity and lateral load resistance and embedded steel beam sections to provide ductility under seismic loading. A vital step towards practical implementation of the FFTT system is to obtain the proof that the connections facilitate the desired ‘strong column – weak beam’ failure mechanism. The numerical work applied the software ANSYS; a parametric study based on the results of previous tests was conducted to obtain a suitable connection configuration for improved structural performance. The experimental work, carried out at FPInnovations, consisted of quasi-static monotonic and reversed cyclic tests on two different connection configurations: fully and partially embedded ASTM wide flange sections in combination with 7 ply CLT panels. The combination of partial embedment length and full embedment depth, even when using the smallest wide flange section, did not facilitate the desired behavior. The connection performance was significantly improved when reducing the embedment depth (to avoid creating stress peaks on a weak cross layer) and increasing the embedment length (larger center to center distance between bearing plates). The used small size steel beam, however, is not practical for a real structure; therefore, further studies with larger beams and a modified geometry are recommended before the FFTT system can be applied in practice.
Online Access
Free
Resource Link
Less detail

Seismic Performance of Embedded Steel Beam Connection in Cross-Laminated Timber Panels for Tall-Wood Hybrid System

https://research.thinkwood.com/en/permalink/catalogue415
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Zhang, Xiaoyue
Azim, Riasat
Bhat, Pooja
Popovski, Marjan
Tannert, Thomas
Publisher
Canadian Science Publishing
Year of Publication
2017
Country of Publication
Canada
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Seismic
Keywords
Timber-Steel Hybrid
Energy Dissipation
FFTT
Quasi-Static
Monotonic Test
Reverse Cyclic Test
Failure mechanism
Beam Profiles
Embedment
Language
English
Research Status
Complete
Series
Canadian Journal of Civil Engineering
Summary
Recent developments in novel engineered mass timber products and connection systems have created the possibility to design and construct tall timber-based buildings. This research presents the experiments conducted on the steel-wood connection as main energy dissipating part of a novel steel–timber hybrid system labelled Finding the Forest Through the Trees (FFTT). The performance was investigated using quasi-static monotonic and reversed cyclic tests. The influence of different steel beam profiles (wide flange I-sections and hollow rectangular sections), and the embedment approaches (partial and full embedment) was investigated. The test results demonstrated that appropriate connection layouts can lead to the desired failure mechanism while avoiding excessive crushing of the mass timber panels. The research can serve as a precursos for developing design guidelines for the FFTT systems as an option for tall wood-hybrid building systems in seismic regions.
Copyright
Courtesy of Canadian Science Publishing
Online Access
Free
Resource Link
Less detail