Skip header and navigation

3 records – page 1 of 1.

Dynamic Evaluation of Hybrid Timber-Steel Moment-Frame Structure Using Resilient Slip Friction Connections

https://research.thinkwood.com/en/permalink/catalogue1756
Year of Publication
2016
Topic
Connections
Seismic
Mechanical Properties
Material
Steel-Timber Composite
Application
Frames
Author
Valadbeigi, Armin
Zarnani, Pouyan
Quenneville, Pierre
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Steel-Timber Composite
Application
Frames
Topic
Connections
Seismic
Mechanical Properties
Keywords
Resilient Slip Friction Joint
Damping
Base Shear
Displacement
Acceleration
Self-Centering
Moment-Resisting
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5031-5040
Summary
This study introduces a new resilient slip friction joint for framed hybrid structures. The proposed connection has a self-centring behaviour in addition to damping characteristic. This innovative Resilient Slip Friction (RSF) joint is replaced with the conventional beam to column connections. The RSF joint provides energy dissipation...
Online Access
Free
Resource Link
Less detail

Seismic Resilient Structures with Cross Laminated Timber (CLT) Walls Coupled with Innovative Resilient Slip Friction (RSF) Joints

https://research.thinkwood.com/en/permalink/catalogue1478
Year of Publication
2017
Topic
Design and Systems
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Hashemi, Ashkan
Quenneville, Pierre
Zarnani, Pouyan
Year of Publication
2017
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Design and Systems
Seismic
Mechanical Properties
Keywords
Timber-Steel Hybrid
Lateral Load Resisting System
Resilient Slip Friction Joint
Self-Centering
Energy Dissipation
Numerical Model
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
There is an increasing public pressure to have damage avoidant structural systems in order to minimize the destruction after severe earthquakes with no post-event maintenance. This study presents and investigates a hybrid steel-timber damage avoidant Lateral Load Resisting System (LLRS) using Cross Laminated Timber (CLT) walls coupled with innovative Resilient Slip Friction (RSF) joints and boundary steel columns. RSF joints are used as ductile links between the adjacent walls or between the walls and the columns. These joints are capable to provide a self-centring behaviour (the main deficiency of conventional friction joints) in addition to a high rate of energy dissipation all in one compact device. One significant advantage of this system is that there are practically no bending stresses in the CLT panels which considerably increases the allowable capacity of the system. A numerical model for a four story prototype building containing the proposed concept is developed and subjected to time-history simulations. The results confirm that this system can be considered as the new generation of resilient LLRSs for different types of structures.
Online Access
Free
Resource Link
Less detail

Seismic Resistant Cross Laminated Timber Structures Using an Innovative Resilient Friction Damping System

https://research.thinkwood.com/en/permalink/catalogue1479
Year of Publication
2017
Topic
Connections
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Hashemi, Ashkan
Valadbeigi, Armin
Masoudnia, Reza
Zarnani, Pouyan
Year of Publication
2017
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Connections
Seismic
Mechanical Properties
Keywords
Resilient Slip Friction Joint
Energy Dissipation
Self-Centering
Hold-Down
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
Multi-storey timber structures are becoming progressively desirable owing to their aesthetic and environmental benefits and to the high strength to weight ratio of timber. A recent trend in timber building industry is toward cross laminated timber (CLT) panelized structures. The shake table tests within the SOFIE project have shown that the CLT buildings constructed with traditional methods can experience high damage especially at the connections which generally consist of hold-down brackets and shear connectors with mechanical fasteners such as nails or bolts. Thus, current construction methods are not recognised as reliable in seismic prone areas. The main objective of this project is to develop a new low damage structural concept using innovative resilient slip friction (RSF) damping devices. The component test results demonstrate the capacity of this novel joint for dissipating earthquake energy as well as self-centring to minimize the damage and the residual drift after a severe event. The application of RSF joints as holddown connectors for walls were investigated through numerical studies. Moreover, a core wall system comprised of cross laminated timber and RSF connectors is subjected to time-history earthquake simulations. The numerical results exhibit no residual displacement alongside a significant reduction in peak acceleration which can be attributed to significant amount of dissipated seismic energy over the RSF joints within the system.
Online Access
Free
Resource Link
Less detail