Skip header and navigation

3 records – page 1 of 1.

Adaptation of Advanced High R-Factor Bracing Systems into Heavy Timber Frames

https://research.thinkwood.com/en/permalink/catalogue1760
Year of Publication
2016
Topic
Seismic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Colin Gilbert
Jeffrey Erochko
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Seismic
Design and Systems
Mechanical Properties
Keywords
Quasi-Static
Cyclic Testing
Ductility
Damping Devices
R-factors
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5068-5077
Abstract
Timber provides attractive earthquake performance characteristics for regions of high seismic risk, particularly its high strength-to-weight ratio; however, current timber structural systems are associated with relatively low design force reduction factors due to their low inherent ductility when compared to high-performance concrete and steel...
Online Access
Free
Resource Link
Less detail

Chapter 4: Lateral Design of Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue823
Year of Publication
2013
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
General Application
Author
John van de Lindt
Douglas Rammer
Marjan Popovski
Philip Line
Shiling Pei
Steven Pryor
Organization
FPInnovations
Binational Softwood Lumber Council
Year of Publication
2013
Country of Publication
Canada
United States
Format
Book Section
Material
CLT (Cross-Laminated Timber)
Application
General Application
Topic
Seismic
Keywords
Seismic Design Coefficients
Lateral Loads
Numerical Model
R-factors
MCE
Language
English
Research Status
Complete
Series
CLT Handbook - US Edition
ISBN
978-0-86488-553-1
ISSN
1925-0495
Abstract
Cross-laminated timber (CLT) is an innovative wood product that was developed approximately two decades ago in Europe and has since been gaining in popularity. Based on the experience of European researchers and designers, it is believed that CLT can provide the U.S. market the opportunity to build mid- and high-rise wood buildings. This Chapter presents a summary of past research and state-of-the-art understanding of the seismic behavior of CLT. As a new structural system to the United States, the design of CLT for seismic applications is expected to be made through alternative method provisions of the building codes. Efforts to develop seismic design coefficients for use in the equivalent lateral force procedures in the United States are underway. Nonlinear numerical modeling of CLT is presented and used to provide and indication of the effect of designing with different R-factors. Using nominal CLT wall capacity values derived from isolated wall tests, the illustrative example showed that an R-factor of approximately 2 can result in a low probability of collapse (less than 10 percent) at MCE intensity.
Online Access
Free
Resource Link
Less detail

Performance Based Design and Force Modification Factors for CLT Structures

https://research.thinkwood.com/en/permalink/catalogue928
Year of Publication
2012
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls