Skip header and navigation

2 records – page 1 of 1.

Experimental Investigation of Connection for the FFTT, A Timber-Steel Hybrid System

https://research.thinkwood.com/en/permalink/catalogue269
Year of Publication
2013
Topic
Connections
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Bhat, Pooja
Organization
University of British Columbia
Year of Publication
2013
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
FFTT
Quasi-Static
Monotonic Testing
Reverse Cyclic Testing
Embedment Depth
Embedment Length
Strong-column Weak-beam Failure
Cross-Section Reduction
Language
English
Research Status
Complete
Summary
This thesis fills the existing knowledge gap between detailed design and global behaviour of hybrid systems through an experimental study on an innovative timber-steel hybrid system called “FFTT”. The FFTT system relies on wall panels of mass timber such as CLT for gravity and lateral load resistance and embedded steel sections for ductility under the earthquake loads. An important step towards the practical application of the FFTT system is obtaining the proof that the connections facilitate the desired ductile failure mode. The experimental investigation was carried out at the facility of FPInnovations, Vancouver. The testing program consisted of quasi-static monotonic and reverse cyclic tests on the timber-steel hybrid system with different configurations. The two beam profiles, wide flange I-sections and hollow rectangular sections were tested. The interaction between the steel beams and CLT panels and the effect of the embedment depth, cross-section reduction and embedment length were closely examined. The study demonstrated that when using an appropriate steel section, the desired ‘Strong Column–Weak Beam’ failure mechanism was initiated and excessive wood crushing was avoided. While wide-flange I-sections were stiffer and stronger, the hollow sections displayed better post-yield behaviour with higher energy dissipation capacity through several cycles of deformation under cyclic loads. The out-of-plane buckling at the point of yielding was the major setback of the embedment of wide-flange I-sections. This research served as a precursor for providing design guidance for the FFTT system as one option for tall wood buildings in high seismic regions.
Online Access
Free
Resource Link
Less detail

Seismic Design of Core-Walls for Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue134
Year of Publication
2013
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shafts and Chases
Author
Dunbar, Andrew
Pampanin, Stefano
Palermo, Alessandro
Buchanan, Andrew
Year of Publication
2013
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shafts and Chases
Topic
Design and Systems
Seismic
Keywords
Multi-Storey
Prefabrication
Pres-Lam
Residential
Quasi-Static Loading
Energy Dissipation
U-Shaped Flexural Plates
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 26-28, 2013, Wellington, New Zealand
Summary
This paper describes options for seismic design of pre-fabricated timber core-wall systems, used as stairwells and lift shafts for lateral load resistance in multi-storey timber buildings. The use of Cross-Laminated Timber (CLT) panels for multi-storey timber buildings is gaining popularity throughout the world, especially for residential construction. This paper describes the possible use of CLT core-walls for seismic resistance in open-plan commercial office buildings in New Zealand. Previous experimental testing at the University of Canterbury has been done on the in-plane behaviour of single and coupled Pres-Lam post-tensioned timber walls. However there has been very little research done on the behaviour of timber walls that are orthogonal to each other and no research into CLT walls in the post-tensioned Pres-Lam system. This paper describes the proposed test regime and design detailing of two half-scale twostorey CLT stairwells to be tested under a bi-directional quasi-static loading. The test specimens will include a half-flight stair case with landings within the stairwell. The “High seismic option” consists of post-tensioned CLT walls coupled with energy dissipating U-shaped Flexural Plates (UFP) attached between wall panels and square hollow section steel columns at the corner junctions. An alternative “Low seismic option” uses the same post-tensioned CLT panels, with no corner columns or UFPs. The panels will be connected by screws to provide a semi-rigid connection, allowing relative movement between the panels producing some level of energy dissipation.
Online Access
Free
Resource Link
Less detail