Skip header and navigation

3 records – page 1 of 1.

Performance Based Design and Force Modification Factors for CLT Structures

https://research.thinkwood.com/en/permalink/catalogue928
Year of Publication
2012
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Author
Pei, Shiling
Popovski, Marjan
van de Lindt, John
Year of Publication
2012
Country of Publication
Sweden
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Topic
Seismic
Design and Systems
Keywords
Quasi-Static Tests
R-factors
Performance-Based Seismic Design
US
Canada
Language
English
Conference
CIB-W18 Meeting
Research Status
Complete
Notes
August 27-30, 2012, Växjö, Sweden p.293-304
Summary
In this paper, a performance-based seismic design (PBSD) of a CLT building was conducted and the seismic response of the CLT building was compared to that of a wood-frame structure tested during the NEESWood project. The results from the quasi-static tests on CLT walls performed at FPInnovations were used as input information for modelling of the CLT walls, the main lateral load resisting elements of the structure. Once the satisfactory design of the CLT mid-rise structure was established through PBSD, a force-based design was developed with varying R-factors and that design was compared to the PBSD result. In this way, suitable R-factors were calibrated so that they can yield equivalent seismic performance of the CLT building when designed using the traditional force-based design methods. Based on the results of this study it is recommended that a value of Rd=2.5 and Ro=1.5 can be assigned for structures with symmetrical floor plans in the National Building Code of Canada (NBCC). In the US an R=4.3 can be used for symmetrical CLT structures designed according to ASCE 7. These values can be assigned provided that the design values for CLT walls considered (and implemented in the material design standards) are similar to the values determined in this study using the kinematics model developed that includes the influence of the hold-downs in the CLT wall resistance. Design of the CLT building with those R-factors using the equivalent static procedures in the US and Canada will result in the CLT building having similar seismic performance to that of the tested wood-frame NEESWood building, which had only minor non-structural damage during a rare earthquake event.
Online Access
Free
Resource Link
Less detail

Seismic Behaviour of Cross-Laminated Timber Structures

https://research.thinkwood.com/en/permalink/catalogue2151
Year of Publication
2012
Topic
Seismic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls

Seismic Performance of a Post-Tensioned LVL Building Subjected to the Canterbury Earthquake Sequence

https://research.thinkwood.com/en/permalink/catalogue157
Year of Publication
2012
Topic
Seismic
Material
LVL (Laminated Veneer Lumber)
Application
Frames
Walls
Wood Building Systems
Author
Smith, Tobias
Carradine, David
Pampanin, Stefano
Ditommaso, Rocco
Carlo Ponzo, Felice
Year of Publication
2012
Country of Publication
New Zealand
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Frames
Walls
Wood Building Systems
Topic
Seismic
Keywords
Post-Tensioning
Quasi-Static
Dynamic
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 13-15, 2012, Christchurch, New Zealand
Summary
The following paper presents the seismic performance of a two storey post-tensioned Laminated Veneer Lumber (LVL) building during the aftershock sequence following the MW 6.3 Canterbury earthquake that occurred on 22nd February 2011. Composed of post-tensioned walls in one direction and post-tensioned frames in the other, the structure under analysis was originally tested quasi-statically in the structural laboratories of the University of Canterbury (UoC), Christchurch, New Zealand. Following testing the building was demounted and reassembled as the offices of the STIC (Structural Timber Innovation Company) research consortium on the UoC campus with several significant changes being made to convert the building from its initial use as a test specimen into a functioning office structure.
Online Access
Free
Resource Link
Less detail