Skip header and navigation

1 records – page 1 of 1.

Performance of Timber-Concrete Composite Floors Using Flat-Plate Engineered Wood Products

https://research.thinkwood.com/en/permalink/catalogue1618
Year of Publication
2016
Topic
Mechanical Properties
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Application
Floors
Author
Gerber, Adam
Popovski, Marjan
Tannert, Thomas
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Application
Floors
Topic
Mechanical Properties
Keywords
Strength
Stiffness
Small Scale
Shear Tests
Elastic Stiffness
Quasi-Static
Loading
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2397-2406
Summary
Timber-Concrete Composite (TCC) systems are comprised of a timber element connected to a concrete slab through a mechanical shear connection. A large number of T-beam configurations currently exist; however, the growing availability of panel-type engineered wood products (EWPs) in North America in combination with a concrete topping has offered designers and engineers greater versatility in terms of architectural expression and structural and building physics performance. The focus of this investigation was to experimentally determine the properties for a range of TCC systems in several EWPs. Strength and stiffness properties were determined for different TCC configurations based on small-scale shear tests. Eighteen floor panels were tested for elastic stiffness under a quasi-static loading protocol and measurements of the dynamic properties were obtained prior to loading to failure. The tests confirmed that calculations according to the -method can predict the basic stiffness and dynamic properties of TCC floors within a reasonable degree of accuracy. Floor capacities were more difficult to predict, however, failure occurred at loads that were between four and ten times serviceability requirements. The research demonstrated that all selected connector configurations produced efficient timber-concrete-composite systems.
Online Access
Free
Resource Link
Less detail