Skip header and navigation

4 records – page 1 of 1.

Adaptation of Advanced High R-Factor Bracing Systems into Heavy Timber Frames

https://research.thinkwood.com/en/permalink/catalogue1760
Year of Publication
2016
Topic
Seismic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Gilbert, Colin
Erochko, Jeffrey
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Seismic
Design and Systems
Mechanical Properties
Keywords
Quasi-Static
Cyclic Testing
Ductility
Damping Devices
R-factors
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5068-5077
Summary
Timber provides attractive earthquake performance characteristics for regions of high seismic risk, particularly its high strength-to-weight ratio; however, current timber structural systems are associated with relatively low design force reduction factors due to their low inherent ductility when compared to high-performance concrete and steel...
Online Access
Free
Resource Link
Less detail

Design and Testing of Post-Tensioned Timber Wall Systems

https://research.thinkwood.com/en/permalink/catalogue696
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Walls
Author
Sarti, Francesco
Palermo, Alessandro
Pampanin, Stefano
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Walls
Topic
Design and Systems
Seismic
Keywords
Multi-Storey
Pres-Lam
Energy Dissipation
Quasi-Static Test
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The paper presents the design and detailing, and the experimental quasi-static 2/3 scale tests of two posttensioned wall systems: a single (more traditional) wall system (Figure 2) and a new configuration comprising of a column-wall-column coupled system (Figure 3). The latter allows avoiding displacement incompatibilities issues between the wall and the diaphragm by using the boundary columns as supports.
Online Access
Free
Resource Link
Less detail

Experimental Study on Innovative Connections for Large Span Timber Truss Structures

https://research.thinkwood.com/en/permalink/catalogue47
Year of Publication
2015
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Yang, Huifeng
Crocetti, Roberto
Larsson, Gustaf
Gustafsson, Per-Johan
Publisher
International Association for Shell and Spatial Structures (IASS)
Year of Publication
2015
Country of Publication
Japan
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Mechanical Properties
Keywords
Reinforcement
Single Large Diameter Dowel Connection (SCDDC)
Full Scale
Tensile Tests
Quasi-Static
Steel Plates
Language
English
Conference
IASS WORKING GROUPS 12 + 18 International Colloquium 2015
Research Status
Complete
Notes
April 10-13, 2015, Tokyo, Japan
Summary
This paper summarizes an experimental investigation on several innovative reinforcing techniques for the “Single Large Diameter Dowel Connection”, SLDDC in timber truss structures. Besides lateral reinforcing or prestressing, also steel plates glued on two sides of the glulam specimens were used as reinforcing measure. To study the efficiency of these techniques, 15 full-scale quasi-static tensile tests on glulam members with a SLDDC on either ends of each member were performed. It was found that the reinforcement significantly enhanced the bearing capacity of the SLDDCs. All of the reinforcing techniques showed a satisfactory efficiency, preventing splitting of wood. Moreover, most of the specimens remains showed a remarkable post failure strength.
Online Access
Free
Resource Link
Less detail

Structural and Thermal Behaviour of a Timber-Concrete Prefabricated Composite Wall System

https://research.thinkwood.com/en/permalink/catalogue247
Year of Publication
2015
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Walls
Author
Destro, Riccardo
Boscato, Giosuè
Mazzali, Ugo
Russo, Salvatore
Peron, Fabio
Romagnoni, Piercarlo
Publisher
ScienceDirect
Year of Publication
2015
Country of Publication
Netherlands
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Walls
Topic
Design and Systems
Mechanical Properties
Keywords
Structural Behaviour
Thermal Behaviour
Prefabrication
Quasi-Static
In-Plane Tests
Language
English
Research Status
Complete
Series
Energy Procedia
Summary
This paper presents the analysis of the structural and thermal behaviour of an timber-concrete prefabricated composite wall system, the Concrete Glulam Framed Panel (CGFP) which is a panel made of a concrete slab and a structural glulam frame. The research analyses the structural performance with quasi-static in-plane tests, focused on the in-plane strength and stiffness of individual panels, and the thermal behaviour of the system with steady state tests using an hot box apparatus. The results validate the efficacy of proposed system ensuring the resistance and the dissipative structural behaviour through the hierarchy response characterized by the wood frame, the braced reinforced concrete panel of the singular module and by the rocking effects of global system.
Online Access
Free
Resource Link
Less detail