Skip header and navigation

11 records – page 1 of 2.

Determination of Seismic Performance Factors for CLT Shear Wall Systems

https://research.thinkwood.com/en/permalink/catalogue770
Year of Publication
2016
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Amini, M. Omar
van de Lindt, John
Rammer, Douglas
Pei, Shiling
Line, Philip
Popovski, Marjan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Seismic
Keywords
Angle Bracket
Cyclic Tests
US
Quasi-Static
Seismic Performance Factors
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria
Summary
This paper presents selected results of connector testing and wall testing which were part of a Forest Products Lab-funded project undertaken at Colorado State University in an effort to determine seismic performance factors for cross laminated timber (CLT) shear walls in the United States. Archetype development, which is required as part of the process, is also discussed. Connector tests were performed on generic angle brackets which were tested under shear and uplift and performed as expected with consistent nail withdrawal observed. Quasi-static cyclic tests were conducted on CLT shear walls to systematically investigate the effects of various parameters. Boundary constraints and gravity loading were both found to have a beneficial effect on the wall performance, i.e. higher strength and deformation capacity. Specific gravity also had a significant effect on wall behaviour while CLT thickness was less influential. Higher aspect ratio panels (4:1) demonstrated lower stiffness and substantially larger deformation capacity compared to moderate aspect ratio panels (2:1). However, based on the test results there is likely a lower bound of 2:1 for aspect ratio where it ceases to have any beneficial effect on wall behaviour. This is likely due to the transition from the dominant rocking behaviour to sliding behaviour.
Online Access
Free
Resource Link
Less detail

Experimental and Numerical Investigation of Novel Steel-Timber-Hybrid System

https://research.thinkwood.com/en/permalink/catalogue81
Year of Publication
2014
Topic
Design and Systems
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Bhat, Pooja
Azim, Riasat
Popovski, Marjan
Tannert, Thomas
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Connections
Keywords
Tall Wood
Timber-Steel Hybrid
FFTT
Quasi-Static
Monotonic Testing
Cyclic Testing
Strong-column Weak-beam Failure
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
This paper summarises the experimental and numerical investigation conducted on the main connection of a novel steel-timber hybrid system called FFTT. The component behaviour of the hybrid system was investigated using quasi-static monotonic and reversed cyclic tests. Different steel profiles (wide flange I-sections and hollow rectangular sections) and embedment approaches for the steel profiles (partial and full embedment) were tested. The results demonstrated that when using an appropriate connection layout, the desired strong-column weak-beam failure mechanism was initiated and excessive wood crushing was avoided. A numerical model was developed that reasonably reflected the real component behaviour and can subsequently be used for numerical sensitivity studies and parameter optimization. The research presented herein serves as a precursor for providing design guidance for the FFTT system as an option for tall wood-hybrid buildings in seismic regions.
Online Access
Free
Resource Link
Less detail

High-Capacity Hold-Down for Tall Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1529
Year of Publication
2016
Topic
Design and Systems
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Author
Zhang, Xiaoyue
Popovski, Marjan
Tannert, Thomas
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Topic
Design and Systems
Seismic
Mechanical Properties
Keywords
Holz-Stahl-Komposit
Hold-Down
Seismic Load
Strength
Stiffness
Ductility
Failure Mechanisms
Quasi-Static
Monotonic Loading
Reverse Cyclic Loading
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 725-732
Summary
The structural use of wood in North America is dominated by light wood-frame construction used in low-rise and – more recently – mid-rise residential buildings. Mass timber engineered wood products such as laminatedveneer-lumber and cross-laminated timber (CLT) panels enable to use the material in tall and large wood and woodbased hybrid buildings. The prospect of constructing taller buildings creates challenges, one of them being the increasein lateral forces created by winds and earthquakes, thus requiring stronger hold-down devices. This paper summarises the experimental investigation on the performance a high-capacity hold-down for resisting seismic loads in tall timberbased structural systems. The connection consists of the Holz-Stahl-Komposit-System (HSK)™ glued into CLT with the modification that ductile steel yielding was allowed to occur inside the CLT panel. The strength, stiffness, ductility and failure mechanisms of this connection were evaluated under quasi-static monotonic and reversed cyclic loading. The results demonstrate that the modified hold-down-assembly provides a possible solution for use in tall timber-based structures in high seismic zones
Online Access
Free
Resource Link
Less detail

Lateral Load Resistance of Cross-Laminated Wood Panels

https://research.thinkwood.com/en/permalink/catalogue2150
Year of Publication
2010
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls

Performance Based Design and Force Modification Factors for CLT Structures

https://research.thinkwood.com/en/permalink/catalogue928
Year of Publication
2012
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Author
Pei, Shiling
Popovski, Marjan
van de Lindt, John
Year of Publication
2012
Country of Publication
Sweden
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Topic
Seismic
Design and Systems
Keywords
Quasi-Static Tests
R-factors
Performance-Based Seismic Design
US
Canada
Language
English
Conference
CIB-W18 Meeting
Research Status
Complete
Notes
August 27-30, 2012, Växjö, Sweden p.293-304
Summary
In this paper, a performance-based seismic design (PBSD) of a CLT building was conducted and the seismic response of the CLT building was compared to that of a wood-frame structure tested during the NEESWood project. The results from the quasi-static tests on CLT walls performed at FPInnovations were used as input information for modelling of the CLT walls, the main lateral load resisting elements of the structure. Once the satisfactory design of the CLT mid-rise structure was established through PBSD, a force-based design was developed with varying R-factors and that design was compared to the PBSD result. In this way, suitable R-factors were calibrated so that they can yield equivalent seismic performance of the CLT building when designed using the traditional force-based design methods. Based on the results of this study it is recommended that a value of Rd=2.5 and Ro=1.5 can be assigned for structures with symmetrical floor plans in the National Building Code of Canada (NBCC). In the US an R=4.3 can be used for symmetrical CLT structures designed according to ASCE 7. These values can be assigned provided that the design values for CLT walls considered (and implemented in the material design standards) are similar to the values determined in this study using the kinematics model developed that includes the influence of the hold-downs in the CLT wall resistance. Design of the CLT building with those R-factors using the equivalent static procedures in the US and Canada will result in the CLT building having similar seismic performance to that of the tested wood-frame NEESWood building, which had only minor non-structural damage during a rare earthquake event.
Online Access
Free
Resource Link
Less detail

Performance of Timber-Concrete Composite Floors Using Flat-Plate Engineered Wood Products

https://research.thinkwood.com/en/permalink/catalogue1618
Year of Publication
2016
Topic
Mechanical Properties
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Application
Floors
Author
Gerber, Adam
Popovski, Marjan
Tannert, Thomas
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Application
Floors
Topic
Mechanical Properties
Keywords
Strength
Stiffness
Small Scale
Shear Tests
Elastic Stiffness
Quasi-Static
Loading
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2397-2406
Summary
Timber-Concrete Composite (TCC) systems are comprised of a timber element connected to a concrete slab through a mechanical shear connection. A large number of T-beam configurations currently exist; however, the growing availability of panel-type engineered wood products (EWPs) in North America in combination with a concrete topping has offered designers and engineers greater versatility in terms of architectural expression and structural and building physics performance. The focus of this investigation was to experimentally determine the properties for a range of TCC systems in several EWPs. Strength and stiffness properties were determined for different TCC configurations based on small-scale shear tests. Eighteen floor panels were tested for elastic stiffness under a quasi-static loading protocol and measurements of the dynamic properties were obtained prior to loading to failure. The tests confirmed that calculations according to the -method can predict the basic stiffness and dynamic properties of TCC floors within a reasonable degree of accuracy. Floor capacities were more difficult to predict, however, failure occurred at loads that were between four and ten times serviceability requirements. The research demonstrated that all selected connector configurations produced efficient timber-concrete-composite systems.
Online Access
Free
Resource Link
Less detail

Performance of Two-Storey CLT House Subjected to Lateral Loads

https://research.thinkwood.com/en/permalink/catalogue376
Year of Publication
2014
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Popovski, Marjan
Gavric, Igor
Schneider, Johannes
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Design and Systems
Keywords
Lateral Loads
North America
Building Codes
Full Scale
Quasi-Static
Monotonic Loading
Cyclic Loading
Failure Mechanism
Language
English
Research Status
Complete
Summary
The work presented in this report is a continuation of the FPInnovations' research project on determining the performance of the CLT as a structural system under lateral loads. A two storey full-scale model of a CLT house was tested under quasi-static monotonic and cyclic lateral loading in two directions, one direction at a time. In total five tests were performed; one push-over and two cyclic tests were conducted in the longer symmetrical direction (E-W), and two cyclic tests were performed in the shorter asymmetrical direction (N-S). In addition, before and after each test, natural frequencies of the house in both directions were measured. The main objective of the tests was to investigate 3-D system behaviour of the CLT structure subjected to lateral loads. The CLT structure subjected to lateral loads performed according to the design objectives.
Online Access
Free
Resource Link
Less detail

Seismic Behaviour of Cross-Laminated Timber Structures

https://research.thinkwood.com/en/permalink/catalogue2151
Year of Publication
2012
Topic
Seismic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls

Seismic Performance of Embedded Steel Beam Connection in Cross-Laminated Timber Panels for Tall-Wood Hybrid System

https://research.thinkwood.com/en/permalink/catalogue415
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Zhang, Xiaoyue
Azim, Riasat
Bhat, Pooja
Popovski, Marjan
Tannert, Thomas
Publisher
Canadian Science Publishing
Year of Publication
2017
Country of Publication
Canada
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Seismic
Keywords
Timber-Steel Hybrid
Energy Dissipation
FFTT
Quasi-Static
Monotonic Test
Reverse Cyclic Test
Failure mechanism
Beam Profiles
Embedment
Language
English
Research Status
Complete
Series
Canadian Journal of Civil Engineering
Summary
Recent developments in novel engineered mass timber products and connection systems have created the possibility to design and construct tall timber-based buildings. This research presents the experiments conducted on the steel-wood connection as main energy dissipating part of a novel steel–timber hybrid system labelled Finding the Forest Through the Trees (FFTT). The performance was investigated using quasi-static monotonic and reversed cyclic tests. The influence of different steel beam profiles (wide flange I-sections and hollow rectangular sections), and the embedment approaches (partial and full embedment) was investigated. The test results demonstrated that appropriate connection layouts can lead to the desired failure mechanism while avoiding excessive crushing of the mass timber panels. The research can serve as a precursos for developing design guidelines for the FFTT systems as an option for tall wood-hybrid building systems in seismic regions.
Copyright
Courtesy of Canadian Science Publishing
Online Access
Free
Resource Link
Less detail

Shear Connections with Self-Tapping-Screws for Cross-Laminated-Timber Panels

https://research.thinkwood.com/en/permalink/catalogue1531
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Hossain, Afrin
Popovski, Marjan
Tannert, Thomas
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Self-Tapping Screws
Joints
Quasi-Static
Capacity
Stiffness
Yield Strength
Ductility
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 756-763
Summary
The research presented in this paper examines the performance of 3-ply and 5-ply Cross-laminated Timber (CLT) panels connected with Self-tapping Screws (STS). Different conventional joint types (surface spline with STS in shear and half-lap joints with STS in either shear or withdrawal) along with two innovative solutions were evaluated in a total of 198 quasi-static tests. The first novel assembly used STS with double inclination of fasteners in butt joints; the second was a combination of STS in withdrawal and shear in lap joints. The joint performance was evaluated in terms of capacity, stiffness, yield strength, and ductility. The results confirmed that joints with STS in shear exhibited high ductility but low stiffness, whereas joints with STS in withdrawal were found to be stiff but less ductile. Combining the shear and withdrawal action of STS led to high stiffness and high ductility.
Online Access
Free
Resource Link
Less detail

11 records – page 1 of 2.