Skip header and navigation

4 records – page 1 of 1.

Conventional and Novel Timber Steel Hybrid Connections: Testing, Performance and Assessment

https://research.thinkwood.com/en/permalink/catalogue187
Year of Publication
2015
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Schneider, Johannes
Organization
University of British Columbia
Year of Publication
2015
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Seismic
Keywords
Timber-Steel Hybrid
Fasteners
Quasi-Static
Monotonic Loading
Cyclic Loading
Brackets
Tube Connections
Language
English
Research Status
Complete
Summary
The focus of this research is the connection between steel frame and the infill wall. Over 100 conventional bracket-type connections with various combinations of bracket and fasteners with cross-laminated timber were tested, investigated and assessed for damage under seismic loading protocols for a hybrid application. An energy-based formulation according to Krätzig was applied to calculate the development of the damage index, and the resulting index was validated with visual observation. Six of the connections were modeled in OpenSees. For the modeling, a CUREE-10 parameter model was chosen to reproduce the test curves. The load-displacement results from both test and model were analyzed; the first method according to ASTM standards, where the envelope curve of the hysteretic results are considered and plotted in an equivalent energy elastic-plastic curve (EEEP). The second analyzing method used, was Krätzig’s damage accumulation model. Throughout all six combinations and both loading directions (parallel- and perpendicular-to-the-grain) a major difference was found in the analyzing methods. The EEEP curve roughly approximates the performance but with the damage accumulation method showed that analysis of the subsequent cycles is required to better reflect the empirical performance of the connections. To avoid the extensive destruction of a bracket type connection after completion of seismic loadings, a new approach was chosen. It was found that a tube connection can obtain comparably similar strength results as a conventional bracket connection. The computed mechanical properties of bracket-type and tube-type connections were compared and evaluated. The new tube connection showed great potential for future timber-steel hybrid structures and their connecting challenge. A total of 27 connection assemblies were tested under quasi-static monotonic and reversed cyclic loads. The tube connections showed two major differences when compared to traditional bracket connections: i) the completely linear elastic behaviour at the beginning, and ii) the continued load increase after yielding. Both phenomena are founded in the geometry of that connector effectively making the novel connector a very promising alternative.
Online Access
Free
Resource Link
Less detail

High-Capacity Hold-Down for Tall Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1529
Year of Publication
2016
Topic
Design and Systems
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Author
Zhang, Xiaoyue
Popovski, Marjan
Tannert, Thomas
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Topic
Design and Systems
Seismic
Mechanical Properties
Keywords
Holz-Stahl-Komposit
Hold-Down
Seismic Load
Strength
Stiffness
Ductility
Failure Mechanisms
Quasi-Static
Monotonic Loading
Reverse Cyclic Loading
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 725-732
Summary
The structural use of wood in North America is dominated by light wood-frame construction used in low-rise and – more recently – mid-rise residential buildings. Mass timber engineered wood products such as laminatedveneer-lumber and cross-laminated timber (CLT) panels enable to use the material in tall and large wood and woodbased hybrid buildings. The prospect of constructing taller buildings creates challenges, one of them being the increasein lateral forces created by winds and earthquakes, thus requiring stronger hold-down devices. This paper summarises the experimental investigation on the performance a high-capacity hold-down for resisting seismic loads in tall timberbased structural systems. The connection consists of the Holz-Stahl-Komposit-System (HSK)™ glued into CLT with the modification that ductile steel yielding was allowed to occur inside the CLT panel. The strength, stiffness, ductility and failure mechanisms of this connection were evaluated under quasi-static monotonic and reversed cyclic loading. The results demonstrate that the modified hold-down-assembly provides a possible solution for use in tall timber-based structures in high seismic zones
Online Access
Free
Resource Link
Less detail

Performance of Two-Storey CLT House Subjected to Lateral Loads

https://research.thinkwood.com/en/permalink/catalogue376
Year of Publication
2014
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Popovski, Marjan
Gavric, Igor
Schneider, Johannes
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Design and Systems
Keywords
Lateral Loads
North America
Building Codes
Full Scale
Quasi-Static
Monotonic Loading
Cyclic Loading
Failure Mechanism
Language
English
Research Status
Complete
Summary
The work presented in this report is a continuation of the FPInnovations' research project on determining the performance of the CLT as a structural system under lateral loads. A two storey full-scale model of a CLT house was tested under quasi-static monotonic and cyclic lateral loading in two directions, one direction at a time. In total five tests were performed; one push-over and two cyclic tests were conducted in the longer symmetrical direction (E-W), and two cyclic tests were performed in the shorter asymmetrical direction (N-S). In addition, before and after each test, natural frequencies of the house in both directions were measured. The main objective of the tests was to investigate 3-D system behaviour of the CLT structure subjected to lateral loads. The CLT structure subjected to lateral loads performed according to the design objectives.
Online Access
Free
Resource Link
Less detail

Simple Cross-Laminated Timber Shear Connections with Spatially Arranged Screws

https://research.thinkwood.com/en/permalink/catalogue1716
Year of Publication
2018
Topic
Connections
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)