Skip header and navigation

1 records – page 1 of 1.

Experimental Investigation on the Fire Resistance of Glued-In Rod Timber Joints with Heat Resistant Modified Epoxy Resin

https://research.thinkwood.com/en/permalink/catalogue2665
Year of Publication
2020
Topic
Fire
Connections
Material
Glulam (Glue-Laminated Timber)
Author
Luo, Liquan
Shi, Benkai
Liu, Weiqing
Yang, Huifeng
Ling, Zhibin
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Fire
Connections
Keywords
Fire Resistance
Glued-In Rod Joint
Glued-In Rod Timber Joint
Pull-Out Test
Heat Resistant
Modified Epoxy Resin
Adhesive
Language
English
Research Status
Complete
Series
Materials
Summary
This paper presents an experimental evaluation of the fire resistance of glued-in rod timber joints using epoxy resin, with and without modification. A heat-resistant modified resin was designed by adding inorganic additives into the epoxy resin, aiming to improve the heat resistance. Joints that were made using the modified epoxy resin at room temperature showed a bearing capacity comparable to those with commercial epoxy resin. Twenty-one joint specimens with the modified epoxy resin and six with a commercial epoxy resin were tested in a fire furnace to evaluate the fire resistance. The main failure mode was the pull-out of the rod, which is typical in fire tests of this type of joints. As to the effects of the test parameters, this study considered the effects of adhesive types, sectional sizes, stress levels, and fireproof coatings. The test results showed that the fire resistance period of a joint can be evidently improved by modifying the resin and using the fireproof coating, as the improvements reached 73% and 35%, respectively, compared with the joint specimens with commercial epoxy resin. It was also found that, for all specimens, the fire resistance period decreased with an increase in the stress level and increased with an increase in the sectional sizes.
Online Access
Free
Resource Link
Less detail