Skip header and navigation

17 records – page 1 of 2.

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Structural Performance of Post-Tensioned CLT Shear Walls with Energy Dissipators

https://research.thinkwood.com/en/permalink/catalogue1472
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Author
Chen, Zhiyong
Popovski, Marjan
Symons, Paul
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Topic
Design and Systems
Mechanical Properties
Seismic
Keywords
Compression Tests
Compression Strength
Energy Dissipation
Post-Tensioned
Pres-Lam
Monotonic Loading
Reverse Cyclic Loading
Language
English
Research Status
Complete
Summary
The latest developments in seismic design philosophy have been geared towards developing of so called "resilient" or "low damage" innovative structural systems that can reduce damage to the structure while offering the same or higher levels of safety to occupants. One such innovative structural system is the Pres-Lam system that is a wood-hybrid system that utilizes post-tensioned (PT) mass timber components in both rigid-frame and wall-based buildings along with various types of energy disspators. To help implement the Pres-Lam system in Canada and the US, information about the system performance made with North American engineered wood products is needed. That information can later be used to develop design guidelines for the designers for wider acceptance of the system by the design community.Several components influence the performance of the Pres-Lam systems: the load-deformation properties of the engineered wood products under compression, load-deformation and energy dissipation properties of the dissipators used, placement of the dissipators in the system, and the level of post-tensioning force. The influence of all these components on the performance of Pres-Lam wall systems under gravity and lateral loads was investigated in this research project. The research project consisted of two main parts: material tests and system tests.
Online Access
Free
Resource Link
Less detail

Carterton Events Centre Auditorium Pres-Lam Wall Design and Construction

https://research.thinkwood.com/en/permalink/catalogue38
Year of Publication
2012
Topic
Seismic
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Shear Walls
Author
Dekker, Dave
Chung, Stanley
Palermo, Alessandro
Year of Publication
2012
Country of Publication
New Zealand
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Shear Walls
Topic
Seismic
Keywords
Lateral Loads
Post-Tensioned
Pres-Lam
Sustainability
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 13-15, 2012, Christchurch, New Zealand
Summary
Driven by sustainability, locally available resources and expertise, and economy, the design of the Carterton Events Centre focused on timber for the majority of the main structural and non-structural components. Combined with a client desire for minimization of earthquake damage, dissipative post-tensioned rocking...
Online Access
Free
Resource Link
Less detail

Cathedral Hill 2: Challenges in the Design of a Tall All-Timber Building

https://research.thinkwood.com/en/permalink/catalogue1660
Year of Publication
2016
Topic
Design and Systems
Seismic
Wind
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Below, Kevin
Sarti, Francesco
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Wind
Keywords
Pres-Lam
Dynamic Behaviour
Nonlinear Time History Analysis
Wind Loading
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3633-3640
Summary
The paper presents the design and modelling of Cathedral Hill 2, a 15-storey timber building, planned for construction in Canada. The building is a 59-metre tall office-use construction with an all-timber structure where the lateral-load-resisting system consists of segmented Pres-Lam walls. The paper firstly presents the design philosophy, and the motivations for the use of the Pres-Lam system, which was mainly driven by serviceability limit-state wind loading. The final part of the paper shows the verification of the building’s dynamic behaviour using non-linear time-history analysis, showing that, although the lateral-load design is governed by serviceability limit-state wind deflections, earthquake demand must not be overlooked due to higher-mode amplifications.
Online Access
Free
Resource Link
Less detail

Design and Testing of Post-Tensioned Timber Wall Systems

https://research.thinkwood.com/en/permalink/catalogue696
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Walls
Author
Sarti, Francesco
Palermo, Alessandro
Pampanin, Stefano
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Walls
Topic
Design and Systems
Seismic
Keywords
Multi-Storey
Pres-Lam
Energy Dissipation
Quasi-Static Test
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The paper presents the design and detailing, and the experimental quasi-static 2/3 scale tests of two posttensioned wall systems: a single (more traditional) wall system (Figure 2) and a new configuration comprising of a column-wall-column coupled system (Figure 3). The latter allows avoiding displacement incompatibilities issues between the wall and the diaphragm by using the boundary columns as supports.
Online Access
Free
Resource Link
Less detail

Development and Testing of an Alternative Dissipative Posttensioned Rocking Timber Wall with Boundary Columns

https://research.thinkwood.com/en/permalink/catalogue1884
Year of Publication
2016
Topic
Seismic
Design and Systems
Application
Frames
Walls

Evaluation of the Seismic Performance Factors Of Post-Tensioned Timber Wall Systems

https://research.thinkwood.com/en/permalink/catalogue80
Year of Publication
2014
Topic
Seismic
Material
LVL (Laminated Veneer Lumber)
Application
Walls
Author
Sarti, Francesco
Palermo, Alessandro
Pampanin, Stefano
Berman, Jeffrey
Organization
The European Association for Earthquake Engineering
Year of Publication
2014
Country of Publication
Turkey
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Walls
Topic
Seismic
Keywords
Connections
Hybrid
Post-Tensioned
Pres-Lam
Testing
Language
English
Conference
Second European Conference on Earthquake Engineering and Seismology
Research Status
Complete
Notes
August 25-29, 2014, Istanbul, Turkey
Summary
Low-damage seismic-resistant post-tensioning technologies were first developed during the PREcast Seismic Structural Systems program, coordinated by the University of California San Diego. Different connections were developed and tested as part of the research program, and the most stable solution was the hybrid connection, which provides a combination of re-centering and dissipative contributions. The hybrid connection was later extended to Laminated Veneer Lumber Elements (LVL) and referred to as Pres-Lam (Prestressed Laminated) system. As part of a broader experimental campaign on frame and walls systems, several experimental tests were carried out on small-scale specimens of post-tensioned single walls and on coupled walls systems. More recently 2/3 scale quasistatic tests were performed on different wall configurations. The paper shows the evaulation of the seismic performance factors of post-tensioned timber wall systems, carried out according to the FEMA P695 procedure. The latter utilizes nonlinear analysis techniques, and explicitly considers uncertainties in ground motion, modelling, design, and test data. The technical approach is a combination of traditional code concepts, advanced nonlinear dynamic analyses, and risk-based assessment techniques. A set of archetype buildings were developed to characterize the behaviour of the system. Several parameters were accounted for, such as the building height, lateral load resisting system, magnitude of the gravity loads and seismic design category. The system archetypes were represented by numerical models developed to simulate the full range of behavioural aspects of the system. Nonlinear quasi-static and dynamic analyses were carried out to determine the system over-strength factors and median collapse capacity of the buildings. The system performance was then assessed by computing the Collapse Margin Ratio (CMR) defined as the ratio of the median collapse (SCT) and MCE (SMT) spectral accelerations.Once the non-linear analysis results confirmed the CMR values were within acceptable values, the trial value of the seismic response modification, R, was confirmed, and the system seismic performance factors were evaluated.
Online Access
Free
Resource Link
Less detail

Experimental Investigation of Wall-To-Floor Connections in Post-Tensioned Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue60
Year of Publication
2014
Topic
Connections
Seismic
Material
LVL (Laminated Veneer Lumber)
Application
Walls
Floors
Author
Moroder, Daniel
Sarti, Francesco
Palermo, Alessandro
Pampanin, Stefano
Buchanan, Andrew
Year of Publication
2014
Country of Publication
New Zealand
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Walls
Floors
Topic
Connections
Seismic
Keywords
Connections
Damage
Lateral Loads
Post-Tensioned
Pres-Lam
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
March 21-23, 2014, Auckland, New Zealand
Summary
Rocking timber walls provide an excellent lateral load resisting system for structures using the low damage seismic design philosophy. Special attention has to be given to the wall-to-floor connections, because diaphragm forces have to be properly transferred while accommodating displacement incompatibilities, which include the relative rotation and the uplift of the wall with respect to the floor. This paper presents the experimental behaviour of several different wall-to-floor connections in Pres-Lam post-tensioned timber structures subjected to horizontal seismic loading. A 2/3 scale post-tensioned timber wall was laterally loaded through collector beams using different connection details. Bolted connections take advantage of the flexibility of the fasteners and lead to some bending of the collector beam, whereas pins and slotted steel plates reduce the wall-tofloor interaction, as they allow for rotation and some uplift. No significant damage to the floors was observed in any of the tests. The experimental results showed that floor damage can generally be prevented up to high levels of drift by the flexibility of well-designed connections and the flexibility of the collector beams. In the case of very stiff floors or very stiff collector beams, a more sophisticated connection such as sliding steel elements with a vertical slot should be considered.
Online Access
Free
Resource Link
Less detail

Floor Diaphragms in Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue71
Year of Publication
2016
Topic
Design and Systems
Seismic
Material
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Application
Floors
Author
Moroder, Daniel
Organization
University of Canterbury
Year of Publication
2016
Country of Publication
New Zealand
Format
Thesis
Material
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Design and Systems
Seismic
Keywords
Diaphragms
Lateral Loads
Multi-Storey
Equivalent Truss Method
Pres-Lam
Language
English
Research Status
Complete
Summary
This thesis studies the behaviour of diaphragms in multi-storey timber buildings by providing methods for the estimation of the diaphragm force demand, developing an Equivalent Truss Method for the analysis of timber diaphragms, and experimentally investigating the effects of displacement incompatibilities between the diaphragm and the lateral load resisting system and developing methods for their mitigation. Although shortcomings in the estimation of force demand, and in the analysis and design of concrete floor diaphragms have already been partially addressed by other researchers, the behaviour of diaphragms in modern multi-storey timber buildings in general, and in low damage Pres-Lam buildings (consisting of post-tensioned timber members) in particular is still unknown. The analysis of light timber framing and massive timber diaphragms can be successfully analysed with an Equivalent Truss Method, which is calibrated by accounting for the panel shear and fastener stiffnesses. Finally, displacement incompatibilities in frame and wall structures can be accommodated by the flexibilities of the diaphragm panels and relative connections. A design recommendations chapter summarizes all findings and allows a designer to estimate diaphragm forces, to analyse the force path in timber diaphragms and to detail the connections to allow for displacement incompatibilities in multi-storey timber buildings.
Online Access
Free
Resource Link
Less detail

Laboratory Tests on a Post-Tensioned Timber Frame

https://research.thinkwood.com/en/permalink/catalogue2206
Year of Publication
2017
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Claude Leyder
Flavio Wanninger
Eleni Chatzi
Andrea Frangi
Organization
ETH Zurich
Year of Publication
2017
Country of Publication
Switzerland
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Mechanical Properties
Keywords
Post-Tensioned
Pres-Lam
Pushover Test
Modal Vibration Tests
Language
English
Research Status
Complete
Series
IBK Bericht
Online Access
Free
Resource Link
Less detail

Long-term Dynamic Characteristics of Pres-Lam Structures

https://research.thinkwood.com/en/permalink/catalogue1647
Year of Publication
2016
Topic
Design and Systems
Seismic
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Smith, Tobias
Sarti, Francesco
Granello, Gabriele
Marshall, Jack
Buckton-Wishart, Victoria
Li, Minghao
Palermo, Alessandro
Pampanin, Stefano
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Pres-Lam
Long-term
Dynamic Behaviour
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3462-3470
Summary
Pres-Lam timber structures are being adopted throughout New Zealand and around the world. This innovative method of timber construction combines the use of large engineered timber members with posttensioning cables/bars. The hybrid version of the Pres-Lam system improves seismic performance through the addition of external or internal steel reinforcing. While the post-tensioning provides re-centering properties, the steel increases energy dissipation from the system as well as increasing moment resistance. The design of these structures is performed to withstand high levels of seismic loading without damage to the structural system. Over time, the post-tensioning force being applied to the structural timber members causes them to reduce in length that has a subsequent impact on the quantity of force being applied. This paper looks at the dynamic characteristics of fundamental period and elastic damping of three recently constructed Pres-Lam buildings, investigating the influence of these losses on the dynamic characteristics. Following this a study of the performance under strong motion is performed. The paper concludes that although the losses in post-tensioning are clear they do not impact on the dynamic characteristics and have only a minor impact on strong motion response.
Online Access
Free
Resource Link
Less detail

17 records – page 1 of 2.