Skip header and navigation

5 records – page 1 of 1.

Calculative Cost and Process Analysis of Timber-Concrete-Composite Ceilings with Focus on Effort and Performance Values for Cost Calculations of Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1753
Year of Publication
2016
Topic
Cost
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
Application
Ceilings
Author
Koppelhuber, Joerg
Leitenbauer, Alexander
Heck, Detlef
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
Application
Ceilings
Topic
Cost
Keywords
Prefabrication
Multi-Storey
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5006-5014
Summary
Composite structures use the advantages of two materials – timber and concrete – and improve the efficiency of a material application. Especially the concept of timber-concrete-composite ceilings has synergetic effects to achieve an effective ratio of thickness to span with high cost effectiveness simultaneously. Following the systematic...
Online Access
Free
Resource Link
Less detail

Construction Management for Tall CLT Buildings: From Partial to Total Prefabrication of Façade Elements

https://research.thinkwood.com/en/permalink/catalogue224
Year of Publication
2015
Topic
Cost
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Gasparri, Eugenia
Lucchini, Angelo
Mantegazza, Gabriele
Mazzucchelli, Enrico
Publisher
Taylor&Francis Online
Year of Publication
2015
Country of Publication
United Kingdom
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Cost
Design and Systems
Keywords
High-Rise
Prefabrication
Tall Wood
Language
English
Research Status
Complete
Series
Wood Material Science & Engineering
Notes
http://dx.doi.org/10.1080/17480272.2015.1075589
Summary
Cross-Laminated Timber is one of the most widely used engineered wood products, thanks to its numerous advantages, among which construction speed is the most appreciated, both by clients and by designers. However, construction scheduling compression refers exclusively to CLT structures, while the rest of the construction process still requires a longer phase to complete vertical enclosures. The aim of the research work presented in this paper is to outline advantages brought about when the degree of envelope prefabrication of tall timber buildings is increased. Results are presented in two sections. The first includes the definition of a case study together with an overview of possible technical details for entirely prefabricated façade solutions, ready to be installed without the need to work via scaffolds. The second deals with construction site management analysis for the case study building, where the determination of specific factors having an influence on time and costs is achieved by varying the prefabrication degree of the various façade configurations and repeating the analysis process. The main findings of this research work demonstrate that comprehensive façade prefabrication allows not only consistent compression of construction scheduling to be achieved, but also for immediate protection of wooden elements from weather agents.
Online Access
Free
Resource Link
Less detail

Development of Light Prefabricated Hybrid Structures for a High-Rise Multi-Storey Building with Emphasis on Connections

https://research.thinkwood.com/en/permalink/catalogue2248
Topic
Cost
Design and Systems
Material
Timber-Concrete Composite
Application
Floors
Organization
Université Laval
Country of Publication
Canada
Material
Timber-Concrete Composite
Application
Floors
Topic
Cost
Design and Systems
Keywords
Vibration
Fire Resistance
Seismic
Ductile
Connections
Ultra-High Performance Concrete
Prefabrication
Research Status
In Progress
Notes
Project contact is Luca Sorelli at Université Laval
Summary
Hybrid wood-concrete structures are emerging in the multi-storey wood building market, as they provide effective solutions in terms of lightness, rigidity, vibration and fire resistance (Yeoh et al., 2010, Dagenais et al., 2016). This project aims to reduce the cost of these hybrid floors by reducing the time of construction by prefabrication technology with emphasis on use. In addition, the goal is to explore the use of Ultra High Performance Fiber Composite Concrete (UHPC) to reduce the thickness of the wood slab, and also the use of ductile connections to increase the reliability of the floor (Habel and Gauvreau). 2008, Zhang and Gauvreau 2014, Auclair-Cuerrier et al 2016a). Finally, the concrete slab improves the diaphragm behavior of the floor to seismic actions.
Less detail

Innovative Construction System for Sustainable Buildings

https://research.thinkwood.com/en/permalink/catalogue140
Year of Publication
2015
Topic
Cost
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Shear Walls
Author
Loss, Cristiano
Piazza, Maurizio
Zandonini, Riccardo
Year of Publication
2015
Country of Publication
Switzerland
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Shear Walls
Topic
Cost
Design and Systems
Keywords
Prefabrication
Residential
Timber-Steel Hybrid
Numerical Analysis
Multi-Storey
Joints
Language
English
Conference
International Association for Bridge and Structural Engineering Conference
Research Status
Complete
Notes
September 23-25, 2015, Geneva, Switzerland
Summary
This paper deals with a contemporary integrated and sustainable construction technology for new residential buildings. Specifically, this research aims at developing innovative steel-timber hybrid structures which allow a rapid assembly of the individual prefabricated components, minimizing the construction times and limiting the costs of the work. The numerical analyses performed on a multi-storey building for social housing will be presented and discussed. The in-plane behaviour of the floors and shear walls will be analysed, considering in particular the types and arrangement of the different timber- and steel-timber joints. The connections to be used among the construction elements will be selected in order to develop a sufficient stiffness, ductility and bearing capacity according to the design criteria for seismic-resistant structures. These connections allow to enhance the on-site assembly operations, therefore working effectively also under harsh climatic conditions.
Online Access
Free
Resource Link
Less detail

Solid Timber Construction: Process, Practice, Performance

https://research.thinkwood.com/en/permalink/catalogue974
Year of Publication
2015
Topic
Market and Adoption
Cost
Design and Systems
Site Construction Management
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
NLT (Nail-Laminated Timber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Author
Smith, Ryan
Griffin, Gentry
Rice, Talbot
Year of Publication
2015
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
NLT (Nail-Laminated Timber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Topic
Market and Adoption
Cost
Design and Systems
Site Construction Management
Keywords
Off-site Construction
Off-site Prefabrication
Schedule
Quality
Safety
Language
English
Research Status
Complete
Summary
This project evaluates off-site solid timber production processes in the international solid timber industry. The Solid Timber Construction (STC) projects documented herein provide a test bed to evaluate project performance metrics attributed to off-site construction. This study also evaluates the contingent qualitative environmental, organizational and technological contextual factors related to STC. The study therefore: Investigates and documents STC projects to identify successful performance metric parameters: economics, schedule, scope, quality, risk, and worker safety. Compares this data to traditional site built construction to determine the estimated added value or negative impact of STC. Identifies qualitative contextual parameters including environment, organization and technology for successfully developing STC methods; Creates a model for data gathering for STC stakeholders to report their own performance parameters and thereby create a robust database of off-site projects in the future. Synthesizes holistic best processes and practices guide for the industry looking to engage in STC work.
Online Access
Free
Resource Link
Less detail