Skip header and navigation

8 records – page 1 of 1.

Compression Perpendicular to Grain Behavior for the Design of a Prefabricated CLT Facade Horizontal Joint

https://research.thinkwood.com/en/permalink/catalogue1540
Year of Publication
2016
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Author
Gasparri, Eugenia
Lam, Frank
Liu, Yingyang
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Topic
Connections
Design and Systems
Keywords
Envelope
Joints
Self-Tapping Screws
Finite Element Analysis
Prefabricated
Vertical Loads
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1088-1098
Summary
The present work aims to define horizontal joint dimension tolerances for newly proposed prefabricated façade systems for applications in tall cross laminated timber (CLT) buildings based on the compression perpendicular to grain characteristics of the component. This requires a thorough understanding of structural settlement under vertical loads which can vary at each floor height. An experimental program has been carried out with reference to the case of a platform frame building construction, where major perpendicular to grain compression of the floor can occur under high loads. Five-layer CLT specimens have been tested under compression via the application of a line load with steel plate as well as actual CLT wall specimens. Strengthening contribution using full threaded self-tapping wood screws has also been investigated. Results of deformation characteristics have been validated through a non-linear finite element analysis and further elaborated in order to outline implications in the design of a prefabricated façade.
Online Access
Free
Resource Link
Less detail

Ecological Thermal Refurbishment with Prefabricated Timber Framed Façade Elements for Mid-Rise Buildings

https://research.thinkwood.com/en/permalink/catalogue1783
Year of Publication
2016
Topic
Energy Performance
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Le Levé, Clemens
Badergruber, Thomas
Beikircher, Wilfried
Kraler, Anton
Flach, Michael
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Mid-Rise
Façade
Thermal
Prefabricated
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5622-5629
Summary
The thermal refurbishment of the building stock is one of the most fundamental challenges of sustainable urban development. Particularly the use of natural and local materials gets an increasing relevance, regarding the embodied energy. The focus of this work is the development of systematised solutions for thermal refurbishment with...
Online Access
Free
Resource Link
Less detail

Geometrical Aspects for the Design of Prefabricated Load-Bearing Timber-Glass-Facades

https://research.thinkwood.com/en/permalink/catalogue1746
Year of Publication
2016
Topic
Design and Systems
Mechanical Properties
Material
Timber-Glass Composite
Application
Hybrid Building Systems
Author
Pascha, Khaled Saleh
Pascha, Vitalija
Winter, Wolfgang
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Glass Composite
Application
Hybrid Building Systems
Topic
Design and Systems
Mechanical Properties
Keywords
Façade
Prefabricated
Load-Bearing Capacity
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4947-4955
Summary
The considerable increase in the architectural demands for highly transparent and load-bearing structures have recently resulted in the development of an innovative hybrid structure. This article provides a review of design parameters for Timber-Glass composite facades. The design/architectural question, which arose in the project, was how...
Online Access
Free
Resource Link
Less detail

Hybrid Wood-Based Structural System for Multi-Storey Buildings

https://research.thinkwood.com/en/permalink/catalogue1894
Year of Publication
2016
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Frames
Author
Loss, Cristiano
Piazza, Maurizio
Zandonini, Riccardo
Year of Publication
2016
Country of Publication
Portugal
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Frames
Topic
Design and Systems
Keywords
Panels
Prefabricated
Shear Tests
Connections
Bending Tests
Language
English
Conference
International Conference on Structures and Architecture
Research Status
Complete
Notes
July 27-29, Guimaraes, Portugal
Online Access
Free
Resource Link
Less detail

Innovative Composite Steel-Timber Floors with Prefabricated Modular Components

https://research.thinkwood.com/en/permalink/catalogue1350
Year of Publication
2017
Topic
Connections
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Author
Loss, Cristiano
Davison, Buick
Publisher
ScienceDirect
Year of Publication
2017
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
Prefabricated
Multi-Storey
Residential
Bearing Capacity
Stiffness
Construction
Mechanical Connectors
Epoxy
Modular
Bending Tests
Finite Element Model
Language
English
Research Status
Complete
Series
Engineering Structures
Summary
An innovative steel-timber composite floor for use in multi-storey residential buildings is presented. The research demonstrates the potential of these steel-timber composite systems in terms of bearing capacity, stiffness and method of construction. Such engineered solutions should prove to be sustainable since they combine recyclable materials in the most effective way. The floors consist of prefabricated ultralight modular components, with a Cross-Laminated Timber (CLT) slab, joined together and to the main structural system using only bolts and screws. Two novel floor solutions are presented, along with the results of experimental tests on the flexural behaviour of their modular components. Bending tests have been performed considering two different methods of loading and constraints. Each prefabricated modular component uses a special arrangement of steel-timber connections to join a CLT panel to two customized cold-formed steel beams. Specifically, the first proposed composite system is assembled using mechanical connectors whereas the second involves the use of epoxy-based resin. In the paper, a FEM model is provided in order to extend this study to other steel-timber composite floor solutions. In addition, the paper contains the design model to be used in dimensioning the developed systems according to the state of the art of composite structures.
Online Access
Free
Resource Link
Less detail

Performance of Timber-Concrete Portable Bridge with Circular Hollow Section Connectors

https://research.thinkwood.com/en/permalink/catalogue1752
Year of Publication
2016
Topic
Mechanical Properties
Connections
Serviceability
Material
Timber-Concrete Composite
Application
Bridges and Spans
Author
Lacis, Raitis
Ozola, Lilita
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Bridges and Spans
Topic
Mechanical Properties
Connections
Serviceability
Keywords
Prefabricated
Proof-Load Tests
Deflection
Bending Strains
Bending Stresses
Transversal Load Distribution
Dynamic Amplification Factor
Field Measurements
FEM
Circular Hollow Connectors
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4997-5005
Summary
This paper presents the research results of a timber-concrete composite portable bridge according to the tests of full-scale structure. Portable timber-concrete bridges can be used for permanent or temporary locations in rural areas such as forests, agricultural fields, mineral extraction pits, military objects and others. All structural elements of...
Online Access
Free
Resource Link
Less detail

Resource Efficiency in Multi-Storey Wooden Buildings

https://research.thinkwood.com/en/permalink/catalogue1625
Year of Publication
2016
Topic
General Information
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Vares, Sirje
Häkkinen, Tarja
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
General Information
Environmental Impact
Keywords
GHG
Resource Consumption
Multi-Storey
Prefabricated
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2727-2734
Summary
Sustainable use of natural resources is essential in lean construction. Resource efficiency brings responsibilities’ for all actors in the whole building value chain. In wooden construction sustainable use of natural resources starts with sustainable forestry, but the design process is responsible for designing resource efficient solutions which are durable, material and energy efficient and long lasting. This paper focuses on studying resource consumption and consequent GHG impacts. The results are given for two wooden prefabricated multi-storey building technologies: for the construction with large elements and for box-modules. Life cycle based material flow accounting shows that the lightweight nature of wooden structures embodies efficiency in resource use. However it depends also on building shape, compactness and the type of on designed solutions. When the intensity of other materials is high enough and the building design is not favourable the final result for the wooden building can be on the same level with concrete buildings. This study clarifies the understanding about material efficiency in wooden buildings.
Online Access
Free
Resource Link
Less detail

Structural Design and Assembly of "Treet" - a 14-Storey Timber Residential Building in Norway

https://research.thinkwood.com/en/permalink/catalogue1856
Year of Publication
2018
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Abrahamsen, Rune
Arne Malo, Kjell
Publisher
New Zealand Timber Design Society
Year of Publication
2018
Country of Publication
New Zealand
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Multi-Storey
Assembly
High-Rise
Modules
Prefabricated
Language
English
Research Status
Complete
Series
New Zealand Timber Design Journal
Online Access
Free
Resource Link
Less detail

8 records – page 1 of 1.