Skip header and navigation

2 records – page 1 of 1.

Behaviour of FRP Retrofitted Glued-Laminated (Glulam) Beams Subjected to Simulated Blast Loads

https://research.thinkwood.com/en/permalink/catalogue1550
Year of Publication
2016
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Lacroix, Daniel
Doudak, Ghasan
Year of Publication
2016
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Retrofitted
Static Loads
Dynamic Loads
GFRP
Damage
Predictive Model
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1207-1214
Summary
Preliminary results from an experimental program investigating the behaviour of retrofitted glulam beams subjected to static and dynamic loads are presented in this paper. The effect of glass fibre-reinforced-polymer (GFRP) laminates applied on the tension side was investigated under both static and dynamic loading as a potential retrofit on undamaged specimens. Furthermore, previously damaged beams were restored by applying GFRP confinement to the damaged region. The experimental results showed that the capacity of the retrofitted beams was improved significantly and the restored beams attained a significant level of their original dynamic capacity. Future work involves the development of a material predictive model that can account for the high-strain rate effects as well as investigating more retrofit options.
Online Access
Free
Resource Link
Less detail

A Study on the Sound Insulation Performance of Cross-laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2837
Year of Publication
2021
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Lin, Jui-Yen
Yang, Chieh-Ting
Tsay, Yaw-Shyan
Organization
National Cheng Kung University
Editor
Savaidis, Georgios
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Acoustics and Vibration
Keywords
Transmission Loss
Acoustic Performance
Predictive Model
Numerical Simulation
Research Status
Complete
Series
Materials
Summary
Cross-laminated Timber (CLT) has become an emerging board material of wood construction that is strong enough to sustain a high-rise building. However, many wooden congregate housing units overseas that utilize CLT have poor sound environments because the low mass of such wood influences sound insulation performance. In this research, we explored the effect of different CLT walls on sound insulation performance and integrated applicable sound insulation simulation tools to simplify the process of designing a CLT wall structure. This research aimed at a double wall and CLT combined with a gypsum board as the research object. The sound insulation performance test was carried out in a laboratory, while the sound insulation performance of the structure was predicted through simulation tools and prediction models and then compared with the measured values to verify the applicability of the simulation tool. The CLT with a double wall and CLT with gypsum board (CLT + GB) achieved Rw of 50 dB. The numerical simulation had better prediction performance than INSUL at the double wall, while the double wall with cavity structure was close to the measured result via mass law calculation. The INSUL-predicted CLT with a gypsum board at 500 Hz~3150 Hz was close to the measured value.
Online Access
Free
Resource Link
Less detail