Skip header and navigation

6 records – page 1 of 1.

Flexural Performance of Novel Nail-Cross-Laminated Timber Composite Panels

https://research.thinkwood.com/en/permalink/catalogue2649
Year of Publication
2020
Topic
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Author
Zhang, Yannian
Nehdi, Moncef
Gao, Xiaohan
Zhang, V. Lei
Organization
Western University
Shenyang Jianzhu University
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Topic
Mechanical Properties
Design and Systems
Keywords
Panels
Flexural Performance
Nails
Bending
Model
Prediction
Fracture
Nail-Cross-Laminated Timber
Research Status
Complete
Series
Applied Sciences
Summary
Cross-laminated timber (CLT) is an innovative wood panel composite that has been attracting growing interest worldwide. Apart from its economic benefits, CLT takes full advantage of both the tensile strength parallel to the wood grain and its compressive strength perpendicular to the grain, which enhances the load bearing capacity of the composite. However, traditional CLT panels are made with glue, which can expire and lose effectiveness over time, compromising the CLT panel mechanical strength. To mitigate such shortcomings of conventional CLT panels, we pioneer herein nail-cross-laminated timber (NCLT) panels with more reliable connection system. This study investigates the flexural performance of NCLT panels made with different types of nails and explores the effects of key design parameters including the nail incidence angle, nail type, total number of nails, and number of layers. Results show that NCLT panels have better flexural performance than traditional CLT panels. The failure mode of NCLT panels depends on the nail angle, nail type, and quantity of nails. A modified formula for predicting the flexural bearing capacity of NCLT panels was proposed and proven accurate. The findings could blaze the trail for potential applications of NCLT panels as a sustainable and resilient construction composite for lightweight structures.
Online Access
Free
Resource Link
Less detail

Modelling Prerequisites – FEM/SEA Impact and Airborne Sound

https://research.thinkwood.com/en/permalink/catalogue840
Year of Publication
2017
Topic
Acoustics and Vibration
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Floors
Walls
Author
Bard, Delphine
Negreira, Juan
Guigou-Carter, Catherine
Borello, Gerard
Kouyoumji, Jean-Luc
Speranza, Alice
Coguenanff, Corentin
Hagberg, Klas
Organization
Silent Timber Build
Year of Publication
2017
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Floors
Walls
Topic
Acoustics and Vibration
Keywords
Europe
Finite Element Model
Frequencies
SEA Model
Prediction
Impact Sound Insulation
Airborne Sound Insulation
Research Status
Complete
Summary
This report comprises reslts from the work done within work package 1 in the WWN+ project "Silent Timber Build", WP 1: Prediction tools, low and high frequencies. The aim from this WP was to develop prediction tools applied for wooden constructions. Included in this is also to create necessary basis for enough accuracy for any European wood construction. It implies development of new methods but also to understand how input forces primarily from the tapping machine affects the resuts of impact sound levels. The WP also describes how models are developed, in order to provide expected accuracy and then how to further improve the models in order to optimize floor and wall assemblies. The Work Package has been closely linked to WP 2 but also WP3. Using the reults from WP 2, the prediction model results can be compared to expected values for any European construction. From that optimization of floor assemblies and refining of the model is possible.
Online Access
Free
Resource Link
Less detail

Predicting the Average Compression Strength of CLT by Using the Average Density or Compressive Strength of Lamina

https://research.thinkwood.com/en/permalink/catalogue3020
Year of Publication
2022
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Tian, Zhaopeng
Gong, Yingchun
Xu, Junhua
Li, Mingyue
Wang, Zhaohui
Ren, Haiqing
Organization
Chinese Academy of Forestry
Editor
Elustondo, Diego
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Compressive Strength
Density
Linear Regression Analysis
Monte Carlo Simulation
Plated Larch
Prediction Model
Research Status
Complete
Series
Forests
Summary
The compressive strength in the major direction of cross-laminated timber CLT is the key to supporting the building load when CLT is used as load-bearing walls in high-rise wood structures. This study mainly aims to present a model for predicting the average compressive strength of CLT and promoting the utilization of CLT made out of planted larch. The densities and compressive strengths of lamina specimens and CLT samples with widths of 89 and 178 mm were evaluated, and their relationship was analyzed to build a prediction model by using Monte Carlo simulation. The results reveal that the average density of the lamina and CLT were about equal, whereas the average compressive strength of the CLT was just about 72% of that of the lamina. Width exerted no significant effect on the average compressive strength of the CLT, but homogenization caused the wider CLT to have a smaller variation than that of the lamina. The average compressive strength of the lamina could be calculated by using the average density of lamina multiply by 103.10, and the average compressive strength of the CLT could be calculated according to the compression strength of lamina in major and minor direction, therefore, a new prediction model is determined to predict the average compression strength of CLT by using the average density of lamina or CLT, the average compression strength of CLT made in this study is about 74.23 times of the average density of the lamina. The results presented in this study can be used to predict the average compressive strength of CLT by using the average density of lamina and provide a fundamental basis for supporting the utilization of CLT as load-bearing walls.
Online Access
Free
Resource Link
Less detail

Prediction of Dynamic Response of a 7-Storey Massive XLam Wooden Building Tested on a Shaking Table

https://research.thinkwood.com/en/permalink/catalogue1885
Year of Publication
2010
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Author
Dujic, Bruno
Žarnic, Roko
Pirmanšek, Klara
Ceccotti, Ario
Year of Publication
2010
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Seismic
Keywords
Multi-Storey
Full Scale Test
Blind Prediction
Static Analyses
Stiffness
Load Bearing
Mechanical Connectors
Dynamic Analysis
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
June 20-24, 2010, Riva del Garda, Italy
Summary
In October 2007 a series of seismic tests were carried out on a 7-storey building made of cross laminated (XLam) wooden panels in natural scale on a shaking table E-Defence in Japan within the SOFIE project. The paper presents calculation procedure, prediction of dynamic behaviour of the tested structure excited by the earthquake record "Kobe JMA 1995" and comparison between predicted, that means calculated and measured response. Due to blind prediction approach some construction details were not known before dynamic time history response calculation. Therefore some assumptions, engineering judgment and rough static analyses were needed to define all construction parts which were in modelling approach assumed as important and could have had influence on dynamic response of the analyzed structure. The most important assumptions related to the definition of the stiffness and load bearing capacity of mechanical connections, types of anchors and their positions in each floor level, were determined on the basis of static analysis where the structure was loaded with equivalent horizontal seismic forces and then were used in dynamic analysis. A mathematical model was developed in program SAP2000 where modal and time history analyses were carried out. Comparison of calculated and measured results is described and evaluated on the basis of the model assumptions and its simplification.
Online Access
Free
Resource Link
Less detail

Study to Validate the Floor Vibration Design of a New Mass Timber Building

https://research.thinkwood.com/en/permalink/catalogue2634
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Organization
KPFF
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Keywords
Vibration Performance
Damping
Span Length
Prediction
Research Status
In Progress
Notes
Project contact is Jacob McCann at KPFF
Summary
As interest has grown in using mass timber for commercial building projects, so too has the need to better understand the vibration characteristics of mass timber floor systems. Vibration requirements typically drive the spans and thicknesses of mass timber floors. Our team has a unique opportunity to close several crucial knowledge gaps while designing the new Health Sciences Education Building (HSEB) at the University of Washington, which is under design and is scheduled to start construction in the summer of 2019. Case Study for Design Guide – The HSEB will be designed using the U.S. Mass Timber Floor Vibration Design Guide. Vibration performance will be measured to further validate or refine the model calibration suggestions put forth in the Design Guide. Damping Measurements – The HSEB will contain a wide variety of program spaces with varying damping characteristics that will be measured and correlated. Stiffness Measurements – Laboratory and in situ testing will be performed on a several floor framing systems. This will include a variety of span lengths and member depths. It will also include composite behavior of concrete and CLT floors with different connection types. The results of this study will allow for more accurate predictions of floor vibrations. This will significantly reduce the cost of mass timber systems in way that is repeatable and scalable for future architects and engineers.
Less detail

A Survey on Modelling of Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1916
Year of Publication
2017
Topic
Design and Systems
Application
Wood Building Systems
Author
Chen, Zhiyong
Karacabeyli, Erol
Lum, Conroy
Organization
FPInnovations
Year of Publication
2017
Format
Report
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Numerical Modelling
Research
Designers
Prediction
Software Tools
Empirical Equations
Design Challenges
Research Status
Complete
Summary
A survey was conducted under the "Renessaince in Wood Construction" project that was funded by Natural Resources Canada (NRCan) under the Transformative Technologies Program to see information about numerical modelling on mass timber buildings. A questionnaire was sent to designers and researchers covering different performance attributes. The compiled information includes the available software packages and resources of empirical equations that are used by the designers and researchers for predicting the structural, fire, acoustic, and building envelope (energy and durability) performance of mass timber buildings, and the challenges that they are facing in using those tools. This report summarizes the input obtained from practicing designers and researchers who responded to this survey.
Online Access
Free
Resource Link
Less detail

6 records – page 1 of 1.