Skip header and navigation

5 records – page 1 of 1.

Alternative Load Path Analyses for Mid-Rise Post and Beam Mass Timber Building

https://research.thinkwood.com/en/permalink/catalogue2448
Year of Publication
2020
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Columns
Beams

A Cradle-to-Cradle Approach to Timber Post and Beam Structures

https://research.thinkwood.com/en/permalink/catalogue1481
Year of Publication
2016
Topic
Environmental Impact
Design and Systems
Connections
Material
Glulam (Glue-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Wood Building Systems
Author
Wong, Yu Feng
Organization
Delft University of Technology
Year of Publication
2016
Format
Report
Material
Glulam (Glue-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Design and Systems
Connections
Keywords
Sustainability
Post and Beam
Cradle-to-Cradle
Adhesives
Research Status
Complete
Summary
The Cradle-to-Cradle Certification at Platinum level, awarded to products which perfectly embody the principles of Cradle-to-Cradle design, is perhaps one of the most esteemed standards of excellence in sustainability circles. Currently, there is no Platinum-level product which can deliver the classic postand-beam structural system. This literature review investigates the possibility of a timber beam product filling in that gap, and the potential design specifications necessary to do it. Findings suggest that the resin component of current glulam beams harm the Cradle-to-Cradle assessment rating, therefore posing a challenge to find eco-friendly alternative. Potential candidates such as lignin and casein resin are studied, along with the novel technology of welded dowel-laminated timber.
Online Access
Free
Resource Link
Less detail

Experimental Study on the Lateral Resistance of Reinforced Glued-Laminated Timber Post and Beam Structures

https://research.thinkwood.com/en/permalink/catalogue2867
Year of Publication
2017
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Xiong, Haibei
Liu, Yingyang
Yao, Ya
Li, Bingyang
Organization
Tongji University
Zhengzhou University
Publisher
Taylor&Francis Group
Year of Publication
2017
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Mechanical Properties
Keywords
Post and Beam
Lateral Load Resisting System
Experimental Investigations
Seismic Performance
Research Status
Complete
Series
Journal of Asian Architecture and Building Engineering
Summary
Nine cyclic tests were conducted on full-scale one-story, one-bay timber post and beam construction specimens to study the lateral resistance of reinforced glued-laminated timber post and beam structures. Two reinforcement methods, wrapping fiber-reinforced polymer (FRP) and implanting self-tapping screws, and two structural systems, simple frame and knee-braced frame, were considered in the experimental tests. Based on the observed experimental phenomena and the test results, the feasibility of the reinforcement was discussed; the contributions of different methods were evaluated; and the seismic performance of the specimens were studied. The results indicated that both reinforcement methods could limit the crack development and improve the strength, stiffness and energy dissipation capacity. The results also showed that the lateral resistance could be significantly improved by retrofitting a failed simple frame with joint reinforcement and a knee-brace, demonstrating that this approach can be applied in engineering practice.
Online Access
Free
Resource Link
Less detail

Moment Resistance of Post-And-Beam Joints with Concealed Metallic Connectors

https://research.thinkwood.com/en/permalink/catalogue621
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Humbert, Jérôme
Lee, Sang-Joon
Park, Joo-Saeng
Park, Moon-Jae
Year of Publication
2014
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Mechanical Properties
Keywords
Moment Resistance
Post and Beam
Joints
Metallic Connectors
Monotonic
Reverse Cyclic Loading
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
This paper presents a study on the moment resistance of post-and-beam joints with concealed metallic connectors aimed at replacing in a more modern design the wood-wood joints of traditional Korean Hanok timber houses. Several variations of the design of the connectors are investigated to optimize the moment resistance of the joints. Experimental tests are conducted under monotonic and reversed cyclic loading. The performance of the joint is evaluated in terms of peak moment resistance, as well as ductility and energy dissipation. Results show that optimization in the design can improve the moment resistance of the joint while preventing the brittle wood fracture and favoring a more ductile plasticizing of the connector, for the benefit of safety.
Online Access
Free
Resource Link
Less detail

A State of the Art of the Overall Energy Efficiency of Wood Buildings—An Overview and Future Possibilities

https://research.thinkwood.com/en/permalink/catalogue2943
Year of Publication
2021
Topic
Energy Performance
Application
Wood Building Systems
Author
Cabral, Matheus
Blanchet, Pierre
Organization
Université Laval
Editor
Koenders, Eddie
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Construction
Energy Efficiency
Embodied Energy
Mass Timber
Phase-Changing Materials
Post-and-Beam
Wood Composites
Wood-Frame
Research Status
Complete
Series
Materials
Summary
The main goal of this study was to review current studies on the state of the art of wood constructions with a particular focus on energy efficiency, which could serve as a valuable source of information for both industry and scholars. This review begins with an overview of the role of materials in wood buildings to improve energy performance, covering structural and insulation materials that have already been successfully used in the market for general applications over the years. Subsequently, studies of different wood building systems (i.e., wood-frame, post-and-beam, mass timber and hybrid constructions) and energy efficiency are discussed. This is followed by a brief introduction to strategies to increase the energy efficiency of constructions. Finally, remarks and future research opportunities for wood buildings are highlighted. Some general recommendations for developing more energy-efficient wood buildings are identified in the literature and discussed. There is a lack of emerging construction concepts for wood-frame and post-and-beam buildings and a lack of design codes and specifications for mass timber and hybrid buildings. From the perspective of the potential environmental benefits of these systems as a whole, and their effects on energy efficiency and embodied energy in constructions, there are barriers that need to be considered in the future.
Online Access
Free
Resource Link
Less detail