Skip header and navigation

1 records – page 1 of 1.

Behavior of Strengthened Timber Concrete Composite Under Axial Loads

https://research.thinkwood.com/en/permalink/catalogue2778
Year of Publication
2021
Topic
Mechanical Properties
Material
Timber-Concrete Composite
Author
El-Salakawy, Tarek
Gamal, Amr
Publisher
ScienceDirect
Year of Publication
2021
Format
Journal Article
Material
Timber-Concrete Composite
Topic
Mechanical Properties
Keywords
Axial Loading
Strengthening
Wire Mesh
Epoxy
Modulus of Elasticity
Failure Mode
Ductility
Post Failure Behavior
Language
English
Research Status
Complete
Series
Case Studies in Construction Materials
Summary
The research study focuses on different strengthening techniques for timber concrete composites (TCC) using different types of wire and wire mesh integrated with a layer of epoxy on a timber core embedded in concrete using experimental and analytical procedure. The impact of TCC on axial compression performance, modulus of elasticity, failure mode and post failure behavior and ductility were compared to reference concrete specimens. Different types of wire and wire mesh used in strengthening of the timber core, timber core size and reinforcement in the concrete cylinder were all parameters considered in this study. Timing of application of the epoxy on the wire strengthened timber core was very important. For structural applications, where the weight reduction and ductility as well as post failure endurance are essential, the development of this composite is recommended. The ratio of the ductility index to the weight is discussed. The light weight of the timber composite, and the increased ductility were noted in this study. An equation to estimate the axial compression capacity of the strengthened timber concrete composite was developed in this study. This study will pave the way for further applications for timber concrete composite aiming at reducing dead weight of concrete and the reducing the amount of concrete and steel in construction.
Online Access
Free
Resource Link
Less detail