Skip header and navigation

2 records – page 1 of 1.

Effet des Paramètres de Conception Sur la Performance Vibratoire des Planchers Massifs en Bois

https://research.thinkwood.com/en/permalink/catalogue2684
Year of Publication
2020
Topic
Acoustics and Vibration
Energy Performance
Material
DLT (Dowel Laminated Timber)
Application
Floors
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
DLT (Dowel Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Energy Performance
Keywords
Concrete Topping
Plywood
Vibration Performance
Bending Stiffness
Language
French
Research Status
Complete
Summary
La construction massive en bois est un terme générique qui englobe une grande variété de produits du bois épais et lourds, notamment le bois lamellé-croisé (CLT), le bois lamellé-goujonné (DLT), le bois lamellé-cloué et le bois lamellé-collé (GLT). À ce jour, les méthodes de conception à vibrations contrôlées ont surtout été élaborées pour les planchers en CLT.
Online Access
Free
Resource Link
Less detail

Field Measurement of Vertical Movement and Roof Moisture Performance of the Wood Innovation and Design Centre: Instrumentation and First Year's Performance

https://research.thinkwood.com/en/permalink/catalogue102
Year of Publication
2015
Topic
Design and Systems
Serviceability
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Serviceability
Keywords
Differential Movement
Long-term
Moisture
Plywood
Roofs
Shrinkage
Tall Wood
Vertical Movement
Language
English
Research Status
Complete
Summary
Two of the major topics of interest to those designing taller and larger wood buildings are the susceptibility to differential movement and the likelihood of mass timber components drying slowly after they are wetted during construction. The Wood Innovation and Design Centre in Prince George, British Columbia provides a unique opportunity for non-destructive testing and monitoring to measure the ‘As Built’ performance of a relatively tall mass timber building. Field measurements also provide performance data to support regulatory and market acceptance of wood-based systems in tall and large buildings. This report first describes instrumentation to measure the vertical movement of selected glulam columns and cross-laminated timber (CLT) walls in this building. Three locations of glulam columns and one CLT wall of the core structure were selected for measuring vertical movement along with the environmental conditions (temperature and humidity) in the immediate vicinity. The report then describes instrumentation to measure the moisture changes in the wood roof structure. Six locations in the roof were selected and instrumented for measuring moisture changes in the wood as well as the local environmental conditions.
Online Access
Free
Resource Link
Less detail