Skip header and navigation

5 records – page 1 of 1.

Charring Behavior of Cross Laminated Timber with Respect to the Fire Protection

https://research.thinkwood.com/en/permalink/catalogue267
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)

Development of Isocyanate-Free and Formaldehyde-Free Adhesives for CLT

https://research.thinkwood.com/en/permalink/catalogue2266
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Organization
TallWood Design Institute
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Bonding
Plywood
Research Status
In Progress
Notes
Contact: Kaichang Li, Oregon State University
Summary
This project aims to develop a commercially-viable wood adhesive for CLT that is free of formaldehyde and isocyanates and possesses good cure speed properties. Li and his team have successfully developed adhesives for plywood manufacturing using abundant, inexpensive and renewable soy flour. This adhesive mimics the superior bonding properties of mussel additive proteins. Emission of hazardous air pollutants from plywood plants that use this adhesive has dropped 50-90 percent. Development of such an adhesive for CLT would address increasingly stringent air quality regulations in many places such as Oregon and California. The existing chemical formulation for the plywood adhesive will be adapted for use in a cold-pressing process. Specimens will be created at the OSU wood composites labs and first tested to verify conformance with the PRG320 product standard for CLT. Specimens passing the tests will be sent to the Energy Studies in Buildings Laboratory at the University of Oregon, Portland, where they will be conditioned and tested to determine emission characteristics.
Less detail

Field Measurement of Vertical Movement and Roof Moisture Performance of the Wood Innovation and Design Centre: Instrumentation and First Year's Performance

https://research.thinkwood.com/en/permalink/catalogue102
Year of Publication
2015
Topic
Design and Systems
Serviceability
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Serviceability
Keywords
Differential Movement
Long-term
Moisture
Plywood
Roofs
Shrinkage
Tall Wood
Vertical Movement
Language
English
Research Status
Complete
Summary
Two of the major topics of interest to those designing taller and larger wood buildings are the susceptibility to differential movement and the likelihood of mass timber components drying slowly after they are wetted during construction. The Wood Innovation and Design Centre in Prince George, British Columbia provides a unique opportunity...
Online Access
Free
Resource Link
Less detail

Innovative Lateral Systems for Mass Timber

https://research.thinkwood.com/en/permalink/catalogue2793
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Shear Walls
Organization
TallWood Design Institute
Oregon State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Shear Walls
Topic
Seismic
Keywords
Post-Tensioned
Rocking Walls
Energy Dissipation
Mass Plywood
Experimental Tests
Seismic Force Resisting System
Research Status
In Progress
Notes
Project contacts are Arijit Sinha, Andre Barbosa and Barbara Simpson at Oregon State University
Summary
The results of this proposal will provide guidance on efficient design and analysis strategies for wood building construction including rocking/post-tensioned and pivoting spines, a next-generation seismic force resisting system, for improved performance, safety, sustainability, and economy. The use of wood in tall buildings is limitied by strength and stiffness considerations. The use of CLT and MPP shear walls, supplemented by energy dissipators may be able to aleviate this problem. Several knowledge gaps exist in terms of the performance of mass timber lateral force resisting systems (LFRS), interconnectivity and compatibility between the modules and LFRS-to-gravity system, and potential hybridization of structural materials for the gravity system and LFRS. The recent 2017 two-story shake table test is the only full scale dynamic on rocking CLT LFRS with energy dissipators. Importantly, since MPP panels are also a recent addition in the mass timber industry, no experimental data exist regarding the self-centering performance of post-tensioned MPP wall panels.
Resource Link
Less detail

Mass-Timber Construction in Australia: Is CLT the Only Answer?

https://research.thinkwood.com/en/permalink/catalogue2727
Year of Publication
2020
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Wood Building Systems
Author
McGavin, Robert
Dakin, Tony
Shanks, Jon
Publisher
North Carolina State University
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
Veneer
Mass Panel
Mass Plywood
Construction
Australia
Language
English
Research Status
Complete
Series
BioResources
Summary
Wood-based mass-panels (WBMP) are emerging as an attractive construction product for large-scale residential and commercial construction. Australia is following the lead of Europe and North America with several recent projects being completed using predominately cross-laminated timber panels (CLT). These sawn timber-based panels offer some key advantages to the construction and sawmilling industry. However, veneer-based mass-panel (VBMP) systems could offer additional benefits including the more efficient use of the available forest resources to produce WBMPs that have equivalent to superior performance to CLT. Research to confirm the expected technical viability of veneer-based systems is required. VBMPs could provide a valuable contribution, alongside CLT, to the Australian timber products market.
Online Access
Free
Resource Link
Less detail