Skip header and navigation

2 records – page 1 of 1.

Field Measurement of Vertical Movement and Roof Moisture Performance of the Wood Innovation and Design Centre: Instrumentation and First Year's Performance

https://research.thinkwood.com/en/permalink/catalogue102
Year of Publication
2015
Topic
Design and Systems
Serviceability
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Serviceability
Keywords
Differential Movement
Long-term
Moisture
Plywood
Roofs
Shrinkage
Tall Wood
Vertical Movement
Language
English
Research Status
Complete
Summary
Two of the major topics of interest to those designing taller and larger wood buildings are the susceptibility to differential movement and the likelihood of mass timber components drying slowly after they are wetted during construction. The Wood Innovation and Design Centre in Prince George, British Columbia provides a unique opportunity for non-destructive testing and monitoring to measure the ‘As Built’ performance of a relatively tall mass timber building. Field measurements also provide performance data to support regulatory and market acceptance of wood-based systems in tall and large buildings. This report first describes instrumentation to measure the vertical movement of selected glulam columns and cross-laminated timber (CLT) walls in this building. Three locations of glulam columns and one CLT wall of the core structure were selected for measuring vertical movement along with the environmental conditions (temperature and humidity) in the immediate vicinity. The report then describes instrumentation to measure the moisture changes in the wood roof structure. Six locations in the roof were selected and instrumented for measuring moisture changes in the wood as well as the local environmental conditions.
Online Access
Free
Resource Link
Less detail

Mass Plywood (MPP) Concrete Composite Floor Systems

https://research.thinkwood.com/en/permalink/catalogue2795
Topic
Connections
Mechanical Properties
Material
MPP (Mass Plywood Panel)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Country of Publication
United States
Material
MPP (Mass Plywood Panel)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Connections
Mechanical Properties
Keywords
Mass Plywood
Concrete Topping
Bending Stiffness
Span Length
HBV Connector
Research Status
In Progress
Notes
Project contacts are Andre Barbosa and Arijit Sinha at Oregon State University
Summary
In order to facilitate adoption of new mass timber products into practice, physical testing is required to understand and predict structural behavior. While extensive testing has been conducted at Oregon State on basic engineering properties of mass plywood panels (MPP) and MPP-to-MPP connections, there exists no experimental data on connections between MPP and other timber members (e.g. glulam) or on composite behavior of MPP with a concrete topping. Previous testing on CLT concrete-composite systems looked at different CLT-to-concrete connection systems, with HBV shear connectors-steel plates partially embedded in the timber with epoxy resin- as a strong candidate in terms of strength and stiffness performance. This project will focus on exploring the performance of MPP-concrete composite systems with HBV connectors.
Resource Link
Less detail