Skip header and navigation

4 records – page 1 of 1.

Charring Behavior of Cross Laminated Timber with Respect to the Fire Protection

https://research.thinkwood.com/en/permalink/catalogue267
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Author
Tiso, Mattia
Organization
SP Technical Research Institute of Sweden
Year of Publication
2014
Country of Publication
Sweden
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Fire
Keywords
Small Scale
Cone Calorimeter
Heat Flux
Gypsum Type F
Plywood
Fire Resistance
Language
English
Research Status
Complete
Summary
Timber buildings made with Cross-laminated Timber (CLT) panels are becoming wide spread in Europe. The fire resistance of CLT panels depends upon several parameters, including the number of layers and their thickness. At the present, EN 1995-1-2:2004 does not provide specific information on the fire design of CLT panels. Several fire resistance tests of CLT panels were performed in different scales by furnace testing using the standard fire curve according to ISO 834-1:1999, however the large number of possible combination of CLT products makes testing too complicated and expensive as a tool for the verification of the fire resistance of several combinations. In this report are presented nine small-scale tests carried-out at SP Wood Technology (Technical Research Institute of Sweden). The tests consisted in specimens of CLT and massive timber exposed at a two steps of constant heat flux in a cone calorimeter (50 and 75 kW/m2). Some specimens were exposed with two different types of fire protection (gypsum plasterboard type F and plywood) and some were tested unprotected. Later, thermal simulations with the same set-up of tests were implemented on the finite element software package in Safir 2007, with the time-temperature curve given by ISO 834 as input; also the analytical calculation of the charring depth following the Eurocode 5 part 1-2 was done. The target of this thesis is to compare performed CLT furnace tests with the smallscale cone calorimeter tests carried out, the numerical results of the thermal model and the analytical results obtained.
Online Access
Free
Resource Link
Less detail

Effect of Design Parameters on Mass Timber Floor Vibration Performance

https://research.thinkwood.com/en/permalink/catalogue2683
Year of Publication
2020
Topic
Acoustics and Vibration
Design and Systems
Material
DLT (Dowel Laminated Timber)
Application
Floors
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
DLT (Dowel Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Design and Systems
Keywords
Concrete Topping
Plywood
Vibration Performance
Bending Stiffness
Language
English
Research Status
Complete
Summary
Mass timber is a generic name for a broad range of thick and heavy wood products such as cross-laminated timber (CLT), dowel-laminated timber (DLT), nail-laminated timber (NLT), and gluelaminated timber (GLT), among others. So far, vibration-controlled design methods have been developed mostly for CLT floors.
Online Access
Free
Resource Link
Less detail

Effet des Paramètres de Conception Sur la Performance Vibratoire des Planchers Massifs en Bois

https://research.thinkwood.com/en/permalink/catalogue2684
Year of Publication
2020
Topic
Acoustics and Vibration
Energy Performance
Material
DLT (Dowel Laminated Timber)
Application
Floors
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
DLT (Dowel Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Energy Performance
Keywords
Concrete Topping
Plywood
Vibration Performance
Bending Stiffness
Language
French
Research Status
Complete
Summary
La construction massive en bois est un terme générique qui englobe une grande variété de produits du bois épais et lourds, notamment le bois lamellé-croisé (CLT), le bois lamellé-goujonné (DLT), le bois lamellé-cloué et le bois lamellé-collé (GLT). À ce jour, les méthodes de conception à vibrations contrôlées ont surtout été élaborées pour les planchers en CLT.
Online Access
Free
Resource Link
Less detail

Mass Plywood (MPP) Concrete Composite Floor Systems

https://research.thinkwood.com/en/permalink/catalogue2795
Topic
Connections
Mechanical Properties
Material
MPP (Mass Plywood Panel)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Country of Publication
United States
Material
MPP (Mass Plywood Panel)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Connections
Mechanical Properties
Keywords
Mass Plywood
Concrete Topping
Bending Stiffness
Span Length
HBV Connector
Research Status
In Progress
Notes
Project contacts are Andre Barbosa and Arijit Sinha at Oregon State University
Summary
In order to facilitate adoption of new mass timber products into practice, physical testing is required to understand and predict structural behavior. While extensive testing has been conducted at Oregon State on basic engineering properties of mass plywood panels (MPP) and MPP-to-MPP connections, there exists no experimental data on connections between MPP and other timber members (e.g. glulam) or on composite behavior of MPP with a concrete topping. Previous testing on CLT concrete-composite systems looked at different CLT-to-concrete connection systems, with HBV shear connectors-steel plates partially embedded in the timber with epoxy resin- as a strong candidate in terms of strength and stiffness performance. This project will focus on exploring the performance of MPP-concrete composite systems with HBV connectors.
Resource Link
Less detail