Skip header and navigation

2 records – page 1 of 1.

Picture Frame and Diagonal Compression Testing of Cross-laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2402
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Floors

Shear Modulus Analysis of Cross-Laminated Timber Using Picture Frame Tests and Finite Element Simulations

https://research.thinkwood.com/en/permalink/catalogue2692
Year of Publication
2020
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Turesson, Jonas
Berg, Sven
Björnfot, Anders
Ekevad, Mats
Publisher
Springer
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Shear Modulus
Finite Element Simulation
Picture Frame Test
Research Status
Complete
Series
Materials and Structures
Summary
Determining the mechanical properties of cross-laminated timber (CLT) panels is an important issue. A property that is particularly important for CLT used as shear walls in buildings is the in-plane shear modulus. In this study, a method to determine the in-plane shear modulus of 3- and 5-layer CLT panels was developed based on picture frame tests and a correction factor evaluated from finite element simulations. The picture frame test is a biaxial test where a panel is simultaneously compressed and tensioned. Two different testing methods are simulated by finite elements: theoretical pure shear models as a reference cases and picture frame models to simulate the picture frame test setup. An equation for calculating the shear modulus from the measured shear stiffnesses in the picture frame tests is developed by comparisons between tests and finite element simulations of the CLT panels. The results show that pure shear conditions are achieved in the central region of the panels. No influence from the size of the tested panels is observed in the finite element simulations.
Online Access
Free
Resource Link
Less detail