Skip header and navigation

12 records – page 1 of 2.

Cross Laminated Timber Shear Wall Connections for Seismic Applications

https://research.thinkwood.com/en/permalink/catalogue2405
Year of Publication
2020
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Falk, Michael
Publisher
Kansas State University
Year of Publication
2020
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Connections
Seismic
Keywords
Panels
Earthquake
Rocking Walls
Shear Walls
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Cross Laminated Timber Shear Wall Connections for Seismic Applications

https://research.thinkwood.com/en/permalink/catalogue2406
Year of Publication
2020
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Falk, Michael
Publisher
Kansas State University
Year of Publication
2020
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Connections
Seismic
Keywords
Panels
Earthquake
Rocking Walls
Shear Walls
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Damage Assessment of Cross Laminated Timber Connections Subjected to Simulated Earthquake Loads

https://research.thinkwood.com/en/permalink/catalogue70
Year of Publication
2012
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Schneider, Johannes
Stiemer, Siegfried
Tesfamariam, Solomon
Karacabeyli, Erol
Popovski, Marjan
Year of Publication
2012
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Seismic
Keywords
Damage
Panels
North American Market
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
July 15-19, 2012, Auckland, New Zealand
Summary
Wood-frame is the most common construction type for residential buildings in North America. However, there is a limit to the height of the building using a traditional wood-frame structure. Cross-laminated timber (CLT) provides possible solutions to mid-...
Online Access
Free
Resource Link
Less detail

Development of CLT Panels Bond-in Method for Seismic Retrofitting of RC Frame Structure

https://research.thinkwood.com/en/permalink/catalogue1860
Year of Publication
2016
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Frames
Author
Haba, Ryota
Kitamori, Akihisa
Mori, Takuro
Fukuhara, Takeshi
Kurihara, Takaaki
Isoda, Hiroshi
Publisher
J-STAGE
Year of Publication
2016
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Frames
Topic
Seismic
Design and Systems
Keywords
Retrofit
Earthquake
Panels
Adhesive
Bonding
Language
Japanese
Research Status
Complete
Series
Journal of Structural and Construction Engineering: Transactions of AIJ
Online Access
Free
Resource Link
Less detail

Direct Displacement Based Design of A Novel Hybrid Structure: Steel Moment-Resisting Frames with Cross Laminated Timber Infill Walls

https://research.thinkwood.com/en/permalink/catalogue15
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls

Japan Kobe Earthquake Shake Table Simulation – Earthquake Performance of Multi-storey Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1849
Year of Publication
2018
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Quenneville, Pierre
Morris, Hugh
Publisher
New Zealand Timber Design Society
Year of Publication
2018
Country of Publication
New Zealand
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Design and Systems
Keywords
Earthquake
Shake Table Test
Panels
Language
English
Research Status
Complete
Series
New Zealand Timber Design Journal
Online Access
Free
Resource Link
Less detail

Nested Buildings: An Innovative Strategy for the Integrated Seismic and Energy Retrofit of Existing Masonry Buildings with CLT Panels

https://research.thinkwood.com/en/permalink/catalogue2770
Year of Publication
2021
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Valluzzi, Maria Rosa
Saler, Elisa
Vignato, Alberto
Salvalaggio, Matteo
Croatto, Giorgio
Dorigatti, Giorgia
Turrini, Umberto
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Design and Systems
Seismic
Keywords
Nested Buildings
Seismic Retrofitting
Energy Efficiency
Integrated Intervention
Built Heritage
Masonry Buildings
Panels
Hybrid Structures
Italy
Language
English
Research Status
Complete
Series
Sustainability
Summary
The Italian building heritage is aged and inadequate to the high-performance levels required nowadays in terms of energy efficiency and seismic response. Innovative techniques are generating a strong interest, especially in terms of multi-level approaches and solution optimizations. Among these, Nested Buildings, an integrated intervention approach which preserves the external existing structure and provides a new structural system inside, aim at improving both energy and structural performances. The research presented hereinafter focuses on the strengthening of unreinforced masonry (URM) buildings with cross-laminated timber (CLT) panels, thanks to their lightweight, high stiffness, and good hygrothermal characteristics. The improvement of the hygrothermal performance was investigated through a 2D-model analyzed in the dynamic regime, which showed a general decreasing in the overall thermal transmittance for the retrofitted configurations. Then, to evaluate the seismic behavior of the coupled system, a parametric linear static analysis was implemented for both in-plane and out-of-plane directions, considering various masonry types and connector spacings. Results showed the efficiency of the intervention to improve the in-plane response of walls, thus validating possible applications to existing URM buildings, where local overturning mechanisms are prevented by either sufficient construction details or specific solutions. View Full-Text
Online Access
Free
Resource Link
Less detail

Numerical Evaluation of Seismic Capacity of Structures with Hybrid Timber-Glass Panels

https://research.thinkwood.com/en/permalink/catalogue1745
Year of Publication
2016
Topic
Mechanical Properties
Seismic
Material
Timber-Glass Composite
Author
Barbalic, Jure
Rajcic, Vlatka
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Glass Composite
Topic
Mechanical Properties
Seismic
Keywords
Ductility
Panels
Strength
Stiffness
Energy Dissipation
Full Scale
Shaking Table Test
Eurocode 8
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4938-4946
Summary
Fulfilment of conditions given by European design codes for structures in seismic regions presents a problem during the design of new and repairing of existing structures. Although there are various options, obvious choices are solutions which provide increase of rigidity and seismic capacity with minimal increase of structural mass...
Online Access
Free
Resource Link
Less detail

A Seismic Design of 3-Story Building Using Japanese "Sugi" CLT Panels

https://research.thinkwood.com/en/permalink/catalogue682
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Matsumoto, Kazuyuki
Miyake, Tatsuya
Haramiishi, Takeshi
Tsuchimoto, Takahiro
Isoda, Hiroshi
Kawai, Naohito
Yasumura, Motoi
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Panels
Sugi
Japan
Dynamic Analysis
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
In this paper, the general process and results of the seismic design on a 3-story building with Japanese Sugi CLT construction based on the time history response analysis as the only legal structural design method in Japan at the present moment, are show...
Online Access
Free
Resource Link
Less detail

Seismic Retrofit of Masonry Infilled Frames by Using Timber Panels

https://research.thinkwood.com/en/permalink/catalogue2728
Year of Publication
2020
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Author
Smiroldo, Francesco
Giongo, Ivan
Piazza, Maurizio
Year of Publication
2020
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Seismic
Keywords
Structural Rehabilitation
Seismic Engineering
Concrete Structures
Panels
Nonlinear Analyses
Finite Element Model
Retrofit
Language
English
Conference
World Conference on Earthquake Engineering
Research Status
Complete
Summary
The study presented herein proposes a retrofit method aimed at reducing the seismic vulnerability of reinforced concrete (RC) frame structures. The method consists in the replacement of the existing masonry infills with timber structural panels made of Cross Laminated Timber (CLT) fixed to the concrete frame by using a timber subframe and dissipative metal dowel-type fasteners. The first part of the research was carried out by performing nonlinear static analyses of finiteelement (FE) models of bare, masonry infilled and retrofitted single-storey single-bay frames. A large number of configurations was analysed considering different original conditions (e.g. in terms of geometrical characteristics, mechanical properties and loading) and several retrofit implementation approaches. Special attention was paid to the improvement of the seismic response of the beam-column joints, that represent a well-known structural vulnerability of existing concrete frame-buildings. The analysis results permitted to define a set of “general rules” to guide the implementation of the retrofit method depending on the characteristics of the original structure. Using these design rules, the proposed solution was then applied to the FE models of three case-study buildings, located in Italy and built in the period from 1950 to 1990. By comparing the seismic response of the pre- and post-intervention structures, it was observed that the proposed system could significantly improve the structural behaviour of the buildings, favouring the development of ductile mechanisms and reducing the vulnerability of the beam-column joints.
Online Access
Free
Resource Link
Less detail

12 records – page 1 of 2.