A study was conducted with the primary objective of gathering information for the development of a protocol for evaluating the surface quality of cross-laminated timber (CLT) products. The secondary objectives were to examine the effect of moisture content (MC) reduction on the development of surface checks and gaps, and find ways of minimizing the checking problems in CLT panels. The wood materials used for the CLT samples were rough-sawn Select grade Hem-Fir boards 25 x 152 mm (1 x 6 inches). Polyurethane was the adhesive used. The development of checks and gaps were evaluated after drying at two temperature levels at ambient relative humidity (RH).
The checks and gaps, as a result of drying to 6% to 10% MC from an initial MC of 13%, occurred randomly depending upon the characteristics of the wood and the manner in which the outer laminas were laid up in the panel. Suggestions are made for minimizing checking and gap problems in CLT panels. The checks and gaps close when the panels are exposed to higher humidity.
Guidelines were proposed for the development of a protocol for classifying CLT panels into appearance grades in terms of the severity of checks and gaps. The grades can be based on the estimated dimensions of the checks and gaps, their frequency, and the number of laminas in which they appear.
The Tallwood House project was intended to advance the design and
manufacture of mass timber products in Canada and demonstrate
that mass timber is a viable structural option for mid-rise and
high-rise buildings. The use of mass timber and engineered wood
products in high-rise construction is becoming more common
around the world leading to a growing interest in the performance of
mass timber over time.
This report describes the performance of the mass timber structure
in Tallwood House, between September 2017 and August 2019,
based on measurements of the moisture content in the prefabricated
CLT floor panels and the displacement of the vertical structural
system. It is intended to initiate discussions on the performance of
mass timber structure elements during building occupancy and lead
to further research that can explore the influential factors.